# Consistency limits of small EDOs

An EDO N is consistent with respect to the q-odd-limit if the closest approximations of the odd harmonics of the q-odd-limit in that edo also give the closest approximations of all the differences between these odd harmonics. It is distinctly consistent if every one of those closest approximations is a distinct value. Below is a table of every EDO up to 99. "Consistent" gives its "consistency limit", i.e. the highest odd limit to which the EDO is consistent, and "Distinct" gives the "distinct consistency limit" i.e. the highest odd limit to which the EDO is distinctly consistent. The remaining columns give the "Consistency distance" (also called "consistency level"[1]) for every odd limit from 3 to 23.

EDO Consistency limit Consistency distance
Consistent Distinct 3-limit 5-limit 7-limit 9-limit 11-limit 13-limit 15-limit 17-limit 19-limit 21-limit 23-limit
1 3 1 1 0 0 0 0 0 0 0 0 0 0
2 3 1 2 0 0 0 0 0 0 0 0 0 0
3 5 3 2 2 0 0 0 0 0 0 0 0 0
4 7 1 1 1 1 0 0 0 0 0 0 0 0
5 9 3 6 1 1 1 0 0 0 0 0 0 0
6 7 3 1 1 1 0 0 0 0 0 0 0 0
7 5 3 5 1 0 0 0 0 0 0 0 0 0
8 5 3 1 1 0 0 0 0 0 0 0 0 0
9 7 5 1 1 1 0 0 0 0 0 0 0 0
10 7 3 3 1 1 0 0 0 0 0 0 0 0
11 3 3 1 0 0 0 0 0 0 0 0 0 0
12 9 5 25 3 1 1 0 0 0 0 0 0 0
13 3 3 1 0 0 0 0 0 0 0 0 0 0
14 3 3 2 0 0 0 0 0 0 0 0 0 0
15 7 5 2 2 1 0 0 0 0 0 0 0 0
16 7 5 1 1 1 0 0 0 0 0 0 0 0
17 3 3 8 0 0 0 0 0 0 0 0 0 0
18 7 5 1 1 1 0 0 0 0 0 0 0 0
19 9 5 4 4 1 1 0 0 0 0 0 0 0
20 3 3 1 0 0 0 0 0 0 0 0 0 0
21 3 3 1 0 0 0 0 0 0 0 0 0 0
22 11 5 3 2 1 1 1 0 0 0 0 0 0
23 5 5 1 1 0 0 0 0 0 0 0 0 0
24 5 5 12 1 0 0 0 0 0 0 0 0 0
25 5 5 1 1 0 0 0 0 0 0 0 0 0
26 13 5 2 1 1 1 1 1 0 0 0 0 0
27 9 7 2 1 1 1 0 0 0 0 0 0 0
28 5 5 1 1 0 0 0 0 0 0 0 0 0
29 15 5 13 1 1 1 1 1 1 0 0 0 0
30 5 5 1 1 0 0 0 0 0 0 0 0 0
31 11 7 3 3 3 1 1 0 0 0 0 0 0
32 3 3 1 0 0 0 0 0 0 0 0 0 0
33 3 3 1 0 0 0 0 0 0 0 0 0 0
34 5 5 4 4 0 0 0 0 0 0 0 0 0
35 7 7 1 1 1 0 0 0 0 0 0 0 0
36 7 7 8 1 1 0 0 0 0 0 0 0 0
37 7 7 1 1 1 0 0 0 0 0 0 0 0
38 5 5 2 2 0 0 0 0 0 0 0 0 0
39 5 5 2 1 0 0 0 0 0 0 0 0 0
40 3 3 1 0 0 0 0 0 0 0 0 0 0
41 15 9 30 2 2 2 1 1 1 0 0 0 0
42 7 7 1 1 1 0 0 0 0 0 0 0 0
43 7 7 3 1 1 0 0 0 0 0 0 0 0
44 5 5 1 1 0 0 0 0 0 0 0 0 0
45 7 7 1 1 1 0 0 0 0 0 0 0 0
46 13 9 5 2 1 1 1 1 0 0 0 0 0
47 5 5 1 1 0 0 0 0 0 0 0 0 0
48 5 5 6 1 0 0 0 0 0 0 0 0 0
49 7 7 1 1 1 0 0 0 0 0 0 0 0
50 9 7 2 2 1 1 0 0 0 0 0 0 0
51 3 3 2 0 0 0 0 0 0 0 0 0 0
52 3 3 1 0 0 0 0 0 0 0 0 0 0
53 9 9 165 8 1 1 0 0 0 0 0 0 0
54 3 3 1 0 0 0 0 0 0 0 0 0 0
55 5 5 2 1 0 0 0 0 0 0 0 0 0
56 7 7 2 1 1 0 0 0 0 0 0 0 0
57 7 7 1 1 1 0 0 0 0 0 0 0 0
58 17 11 6 1 1 1 1 1 1 1 0 0 0
59 7 7 1 1 1 0 0 0 0 0 0 0 0
60 9 9 5 1 1 1 0 0 0 0 0 0 0
61 5 5 1 1 0 0 0 0 0 0 0 0 0
62 7 7 1 1 1 0 0 0 0 0 0 0 0
63 7 7 3 1 1 0 0 0 0 0 0 0 0
64 3 3 1 0 0 0 0 0 0 0 0 0 0
65 5 5 22 5 0 0 0 0 0 0 0 0 0
66 3 3 1 0 0 0 0 0 0 0 0 0 0
67 3 3 2 0 0 0 0 0 0 0 0 0 0
68 9 9 2 2 2 1 0 0 0 0 0 0 0
69 5 5 1 1 0 0 0 0 0 0 0 0 0
70 9 9 9 1 1 1 0 0 0 0 0 0 0
71 5 5 1 1 0 0 0 0 0 0 0 0 0
72 17 11 4 2 2 2 2 1 1 1 0 0 0
73 7 7 1 1 1 0 0 0 0 0 0 0 0
74 5 5 1 1 0 0 0 0 0 0 0 0 0
75 5 5 3 1 0 0 0 0 0 0 0 0 0
76 7 7 1 1 1 0 0 0 0 0 0 0 0
77 9 9 11 1 1 1 0 0 0 0 0 0 0
78 7 7 1 1 1 0 0 0 0 0 0 0 0
79 5 5 2 1 0 0 0 0 0 0 0 0 0
80 19 11 2 2 1 1 1 1 1 1 1 0 0
81 7 7 1 1 1 0 0 0 0 0 0 0 0
82 9 9 15 1 1 1 0 0 0 0 0 0 0
83 7 7 1 1 1 0 0 0 0 0 0 0 0
84 9 9 3 3 1 1 0 0 0 0 0 0 0
85 3 3 1 0 0 0 0 0 0 0 0 0 0
86 3 3 1 0 0 0 0 0 0 0 0 0 0
87 15 13 4 4 1 1 1 1 1 0 0 0 0
88 7 7 1 1 1 0 0 0 0 0 0 0 0
89 11 11 8 1 1 1 1 0 0 0 0 0 0
90 7 7 1 1 1 0 0 0 0 0 0 0 0
91 9 9 2 1 1 1 0 0 0 0 0 0 0
92 5 5 2 1 0 0 0 0 0 0 0 0 0
93 7 7 1 1 1 0 0 0 0 0 0 0 0
94 23 13 36 1 1 1 1 1 1 1 1 1 1
95 7 7 1 1 1 0 0 0 0 0 0 0 0
96 5 5 3 1 0 0 0 0 0 0 0 0 0
97 5 5 1 1 0 0 0 0 0 0 0 0 0
98 3 3 1 0 0 0 0 0 0 0 0 0 0
99 9 9 5 3 3 2 0 0 0 0 0 0 0