Consistency levels of small EDTs
Jump to navigation
Jump to search
An EDT N is consistent with respect to a set of rational numbers s if the patent val mapping of every element of s is the nearest N-edt approximation. It is uniquely consistent if every element of s is mapped to a unique value. If the set s is the q limit (no-twos limit or integer limit), we say N is q-limit consistent and q-limit uniquely consistent, respectively. Below is a table of every EDT up to 99. "Consistent" gives the consistency level, and "Distinct" the distinct consistency level.
EDT | No-twos limit | Integer limit | ||
---|---|---|---|---|
Consistent | Distinct | Consistent | Distinct | |
1 | 5 | 1 | 3 | 1 |
2 | 7 | 5 | 3 | 1 |
3 | 7 | 5 | 4 | 3 |
4 | 11 | 5 | 3 | 3 |
5 | 11 | 5 | 7 | 4 |
6 | 13 | 7 | 7 | 3 |
7 | 17 | 5 | 3 | 3 |
8 | 7 | 5 | 10 | 4 |
9 | 7 | 7 | 3 | 3 |
10 | 11 | 7 | 3 | 3 |
11 | 11 | 5 | 6 | 4 |
12 | 5 | 5 | 3 | 3 |
13 | 13 | 11 | 7 | 4 |
14 | 13 | 7 | 7 | 6 |
15 | 17 | 7 | 3 | 3 |
16 | 7 | 7 | 9 | 4 |
17 | 17 | 11 | 3 | 3 |
18 | 13 | 11 | 3 | 3 |
19 | 7 | 7 | 10 | 6 |
20 | 7 | 7 | 3 | 3 |
21 | 17 | 11 | 4 | 4 |
22 | 13 | 11 | 7 | 4 |
23 | 7 | 7 | 3 | 3 |
24 | 5 | 5 | 6 | 6 |
25 | 5 | 5 | 6 | 6 |
26 | 19 | 13 | 3 | 3 |
27 | 17 | 11 | 4 | 4 |
28 | 7 | 7 | 3 | 3 |
29 | 11 | 11 | 3 | 3 |
30 | 7 | 7 | 10 | 7 |
31 | 5 | 5 | 3 | 3 |
32 | 19 | 13 | 4 | 4 |
33 | 23 | 13 | 4 | 4 |
34 | 11 | 11 | 3 | 3 |
35 | 11 | 11 | 12 | 7 |
36 | 17 | 11 | 3 | 3 |
37 | 5 | 5 | 3 | 3 |
38 | 5 | 5 | 6 | 6 |
39 | 13 | 13 | 3 | 3 |
40 | 7 | 7 | 4 | 4 |
41 | 7 | 7 | 10 | 9 |
42 | 5 | 5 | 3 | 3 |
43 | 11 | 11 | 10 | 7 |
44 | 5 | 5 | 4 | 4 |
45 | 7 | 7 | 3 | 3 |
46 | 13 | 13 | 16 | 7 |
47 | 7 | 7 | 3 | 3 |
48 | 7 | 7 | 3 | 3 |
49 | 11 | 11 | 12 | 9 |
50 | 5 | 5 | 3 | 3 |
51 | 5 | 5 | 4 | 4 |
52 | 29 | 17 | 4 | 4 |
53 | 19 | 17 | 3 | 3 |
54 | 13 | 13 | 7 | 7 |
55 | 5 | 5 | 3 | 3 |
56 | 13 | 13 | 3 | 3 |
57 | 7 | 7 | 9 | 9 |
58 | 11 | 11 | 3 | 3 |
59 | 5 | 5 | 6 | 6 |
60 | 13 | 13 | 6 | 6 |
61 | 23 | 17 | 3 | 3 |
62 | 7 | 7 | 7 | 7 |
63 | 5 | 5 | 3 | 3 |
64 | 5 | 5 | 3 | 3 |
65 | 13 | 13 | 16 | 10 |
66 | 13 | 13 | 3 | 3 |
67 | 7 | 7 | 3 | 3 |
68 | 5 | 5 | 6 | 6 |
69 | 7 | 7 | 3 | 3 |
70 | 11 | 11 | 4 | 4 |
71 | 17 | 17 | 7 | 7 |
72 | 5 | 5 | 3 | 3 |
73 | 17 | 17 | 18 | 10 |
74 | 7 | 7 | 3 | 3 |
75 | 13 | 13 | 3 | 3 |
76 | 5 | 5 | 6 | 6 |
77 | 5 | 5 | 3 | 3 |
78 | 19 | 19 | 7 | 7 |
79 | 7 | 7 | 10 | 9 |
80 | 7 | 7 | 3 | 3 |
81 | 5 | 5 | 4 | 4 |
82 | 17 | 17 | 3 | 3 |
83 | 7 | 7 | 3 | 3 |
84 | 7 | 7 | 10 | 10 |
85 | 11 | 11 | 3 | 3 |
86 | 7 | 7 | 3 | 3 |
87 | 7 | 7 | 4 | 4 |
88 | 11 | 11 | 3 | 3 |
89 | 5 | 5 | 6 | 6 |
90 | 5 | 5 | 6 | 6 |
91 | 7 | 7 | 3 | 3 |
92 | 17 | 17 | 18 | 12 |
93 | 5 | 5 | 3 | 3 |
94 | 5 | 5 | 3 | 3 |
95 | 11 | 11 | 10 | 10 |
96 | 7 | 7 | 3 | 3 |
97 | 11 | 11 | 6 | 6 |
98 | 23 | 23 | 7 | 7 |
99 | 19 | 19 | 3 | 3 |