Consistency levels of small EDTs

From Xenharmonic Wiki
Jump to: navigation, search

An EDT N is consistent with respect to a set of rational numbers s if the patent val mapping of every element of s is the nearest N-edt approximation. It is uniquely consistent if every element of s is mapped to a unique value. If the set s is the q limit (no-twos limit or integer limit), we say N is q-limit consistent and q-limit uniquely consistent, respectively. Below is a table of every EDT up to 99. "Consistent" gives the consistency level, and "Distinct" the distinct consistency level.

EDT No-twos limit Integer limit
Consistent Distinct Consistent Distinct
1 5 1 3 1
2 7 5 3 1
3 7 5 4 3
4 11 5 3 3
5 11 5 7 4
6 13 7 7 3
7 17 5 3 3
8 7 5 10 4
9 7 7 3 3
10 11 7 3 3
11 11 5 6 4
12 5 5 3 3
13 13 11 7 4
14 13 7 7 6
15 17 7 3 3
16 7 7 9 4
17 17 11 3 3
18 13 11 3 3
19 7 7 10 6
20 7 7 3 3
21 17 11 4 4
22 13 11 7 4
23 7 7 3 3
24 5 5 6 6
25 5 5 6 6
26 19 13 3 3
27 17 11 4 4
28 7 7 3 3
29 11 11 3 3
30 7 7 10 7
31 5 5 3 3
32 19 13 4 4
33 23 13 4 4
34 11 11 3 3
35 11 11 12 7
36 17 11 3 3
37 5 5 3 3
38 5 5 6 6
39 13 13 3 3
40 7 7 4 4
41 7 7 10 9
42 5 5 3 3
43 11 11 10 7
44 5 5 4 4
45 7 7 3 3
46 13 13 16 7
47 7 7 3 3
48 7 7 3 3
49 11 11 12 9
50 5 5 3 3
51 5 5 4 4
52 29 17 4 4
53 19 17 3 3
54 13 13 7 7
55 5 5 3 3
56 13 13 3 3
57 7 7 9 9
58 11 11 3 3
59 5 5 6 6
60 13 13 6 6
61 23 17 3 3
62 7 7 7 7
63 5 5 3 3
64 5 5 3 3
65 13 13 16 10
66 13 13 3 3
67 7 7 3 3
68 5 5 6 6
69 7 7 3 3
70 11 11 4 4
71 17 17 7 7
72 5 5 3 3
73 17 17 18 10
74 7 7 3 3
75 13 13 3 3
76 5 5 6 6
77 5 5 3 3
78 19 19 7 7
79 7 7 10 9
80 7 7 3 3
81 5 5 4 4
82 17 17 3 3
83 7 7 3 3
84 7 7 10 10
85 11 11 3 3
86 7 7 3 3
87 7 7 4 4
88 11 11 3 3
89 5 5 6 6
90 5 5 6 6
91 7 7 3 3
92 17 17 18 12
93 5 5 3 3
94 5 5 3 3
95 11 11 10 10
96 7 7 3 3
97 11 11 6 6
98 23 23 7 7
99 19 19 3 3