Catalog of eleven-limit rank two temperaments
Jump to navigation
Jump to search
Below is a complete listing of all 193 11-limit rank-two temperaments with TE complexity less than 16 and TE logflat badness less than 1/30, obtained by the wedgie method. The TE error is multiplied by 1200 so that it can be thought of as cents, and the badness is multiplied by 1000. Some "junk" temperaments of very low complexity are listed below the main list, which is ordered by increasing complexity.
Temperament list
Name | Complexity | Error (¢) | Badness (k) | Mapping | Commas |
---|---|---|---|---|---|
.655 | 54.775 | 22.549 | [<1 0 -1 -2 -3|, <0 1 2 3 4|] | 10/9 15/14 22/21 | |
.680 | 74.627 | 32.666 | [<3 5 7 0 10|, <0 0 0 1 0|] | 11/9 10/9 16/15 | |
.692 | 73.354 | 33.117 | [<1 0 4 3 7|, <0 1 -1 0 -2|] | 8/7 25/22 15/14 | |
.712 | 47.618 | 22.540 | [<4 6 9 11 0|, <0 0 0 0 1|] | 9/8 35/32 15/14 | |
.718 | 57.400 | 27.551 | [<2 3 0 1 -2|, <0 0 1 1 2|] | 25/22 9/8 15/14 | |
.718 | 46.851 | 22.488 | [<1 1 2 2 3|, <0 2 1 3 2|] | 25/22 12/11 15/14 | |
.727 | 44.826 | 21.957 | [<1 0 4 6 5|, <0 1 -1 -2 -1|] | 11/10 16/15 21/20 | |
.771 | 47.381 | 25.592 | [<3 5 7 0 2|, <0 0 0 1 1|] | 10/9 16/15 22/21 | |
.776 | 45.662 | 24.928 | [<1 0 4 6 2|, <0 1 -1 -2 1|] | 12/11 16/15 21/20 | |
.796 | 38.983 | 22.203 | [<1 0 0 2 1|, <0 2 3 1 3|] | 11/10 27/25 21/20 | |
.807 | 41.497 | 24.184 | [<1 0 0 2 2|, <0 2 3 1 2|] | 12/11 27/25 21/20 | |
.832 | 38.874 | 23.823 | [<1 0 4 -2 2|, <0 1 -1 3 1|] | 12/11 16/15 28/27 | |
.833 | 47.271 | 29.071 | [<1 1 2 3 3|, <0 2 1 -1 1|] | 11/10 21/20 25/24 | |
Dicot | .854 | 30.986 | 19.854 | [<1 1 2 2 2|, <0 2 1 3 5|] | 15/14 22/21 25/24 |
.905 | 43.667 | 30.795 | [<1 0 4 -2 5|, <0 1 -1 3 -1|] | 11/10 16/15 28/27 | |
.923 | 33.964 | 24.785 | [<5 8 12 14 0|, <0 0 0 0 1|] | 27/25 16/15 21/20 | |
.931 | 43.645 | 32.259 | [<1 0 3 2 1|, <0 2 -1 1 3|] | 35/32 15/14 22/21 | |
.979 | 40.847 | 32.831 | [<1 0 4 6 10|, <0 1 -1 -2 -4|] | 16/15 35/33 21/20 | |
.986 | 25.28 | 20.589 | [<1 0 4 -2 -3|, <0 1 -1 3 4|] | 16/15 22/21 28/27 | |
1.016 | 29.191 | 24.988 | [<1 1 2 3 4|, <0 2 1 -1 -2|] | 21/20 25/24 33/32 | |
1.023 | 30.999 | 26.828 | [<1 0 7 6 5|, <0 1 -3 -2 -1|] | 15/14 22/21 33/32 | |
1.042 | 27.464 | 24.506 | [<1 0 -4 -2 -6|, <0 1 4 3 6|] | 35/33 21/20 28/27 | |
1.067 | 29.219 | 27.114 | [<1 1 2 2 4|, <0 2 1 3 -2|] | 15/14 25/24 33/32 | |
1.087 | 26.805 | 25.660 | [<1 1 2 3 2|, <0 2 1 -1 5|] | 21/20 25/24 45/44 | |
Meanertone | 1.138 | 24.359 | 25.167 | [<1 0 -4 -2 5|, <0 1 4 3 -1|] | 21/20 28/27 55/54 |
Pento | 1.138 | 22.068 | 22.799 | [<1 0 0 2 -2|, <0 2 3 1 7|] | 27/25 21/20 45/44 |
Pentoid | 1.142 | 21.771 | 22.649 | [<1 0 0 2 5|, <0 2 3 1 -2|] | 27/25 21/20 99/98 |
Meansept | 1.148 | 30.989 | 32.521 | [<1 0 -4 -5 -6|, <0 1 4 5 6|] | 15/14 22/21 125/121 |
Sharp | 1.196 | 19.922 | 22.366 | [<1 1 2 1 2|, <0 2 1 6 5|] | 35/33 25/24 28/27 |
1.208 | 25.57 | 29.193 | [<2 0 8 9 7|, <0 1 -1 -1 0|] | 16/15 22/21 50/49 | |
1.226 | 19.454 | 22.753 | [<1 0 7 9 5|, <0 1 -3 -4 -1|] | 21/20 33/32 45/44 | |
1.258 | 23.058 | 28.153 | [<1 0 4 -2 10|, <0 1 -1 3 -4|] | 16/15 28/27 77/75 | |
Hystrix | 1.335 | 19.86 | 26.790 | [<1 2 3 3 4|, <0 -3 -5 -1 -4|] | 22/21 80/77 36/35 |
Arnold | 1.340 | 19.265 | 26.141 | [<1 0 -4 6 5|, <0 1 4 -2 -1|] | 22/21 33/32 36/35 |
1.358 | 22.998 | 31.934 | [<5 8 0 14 17|, <0 0 1 0 0|] | 22/21 28/27 33/32 | |
1.415 | 18.282 | 27.164 | [<4 0 3 5 1|, <0 1 1 1 2|] | 22/21 36/35 50/49 | |
1.431 | 20.956 | 31.719 | [<1 1 2 4 4|, <0 2 1 -4 -2|] | 22/21 25/24 33/32 | |
Ferrum | 1.443 | 20.107 | 30.883 | [<5 8 0 14 6|, <0 0 1 0 1|] | 35/33 28/27 49/48 |
Decibel | 1.461 | 20.67 | 32.385 | [<2 0 3 4 7|, <0 2 1 1 0|] | 35/33 25/24 49/48 |
1.495 | 19.317 | 31.468 | [<2 0 -5 -4 -6|, <0 1 3 3 4|] | 22/21 28/27 50/49 | |
1.500 | 19.693 | 32.239 | [<1 1 2 1 4|, <0 2 1 6 -2|] | 25/24 28/27 33/32 | |
August | 1.506 | 12.245 | 20.191 | [<3 0 7 -1 1|, <0 1 0 2 2|] | 36/35 45/44 56/55 |
Domineering | 1.523 | 13.075 | 21.978 | [<1 0 -4 6 -6|, <0 1 4 -2 6|] | 36/35 45/44 64/63 |
Jamesbond | 1.564 | 13.396 | 23.524 | [<7 11 16 0 24|, <0 0 0 1 0|] | 25/24 33/32 45/44 |
Diminished | 1.582 | 12.367 | 22.132 | [<4 0 3 5 14|, <0 1 1 1 0|] | 36/35 50/49 56/55 |
Armodue | 1.603 | 14.879 | 27.211 | [<1 0 7 -5 5|, <0 1 -3 5 -1|] | 33/32 36/35 45/44 |
Dichotic | 1.630 | 16.311 | 30.680 | [<1 1 2 4 2|, <0 2 1 -4 5|] | 25/24 45/44 64/63 |
Opossum | 1.692 | 11.146 | 22.325 | [<1 2 3 4 4|, <0 -3 -5 -9 -4|] | 28/27 77/75 55/54 |
Octokaidecal | 1.698 | 15.008 | 30.235 | [<2 0 -5 -4 7|, <0 1 3 3 0|] | 28/27 50/49 55/54 |
Pajaric | 1.722 | 11.548 | 23.798 | [<2 0 11 12 7|, <0 1 -2 -2 0|] | 45/44 50/49 56/55 |
Progression | 1.749 | 12.314 | 26.050 | [<1 1 2 2 3|, <0 5 3 7 4|] | 36/35 77/75 56/55 |
Decimal | 1.751 | 12.599 | 26.712 | [<2 0 3 4 -1|, <0 2 1 1 5|] | 25/24 45/44 49/48 |
Blacksmith | 1.825 | 10.85 | 24.641 | [<5 8 0 14 29|, <0 0 1 0 -1|] | 28/27 49/48 55/54 |
Demolished | 1.831 | 11.635 | 26.574 | [<4 0 3 5 -5|, <0 1 1 1 3|] | 36/35 45/44 50/49 |
Dominant | 1.864 | 10.279 | 24.180 | [<1 0 -4 6 13|, <0 1 4 -2 -6|] | 36/35 56/55 64/63 |
Decimated | 1.886 | 13.109 | 31.456 | [<2 0 3 4 10|, <0 2 1 1 -2|] | 25/24 33/32 49/48 |
Meanenneadecal | 1.918 | 8.680 | 21.423 | [<1 0 -4 -13 -6|, <0 1 4 10 6|] | 45/44 56/55 81/80 |
Sidi | 1.958 | 12.902 | 32.957 | [<1 3 3 6 7|, <0 -4 -2 -9 -10|] | 25/24 45/44 99/98 |
Ferrier | 1.993 | 11.103 | 29.200 | [<5 8 0 14 -6|, <0 0 1 0 2|] | 28/27 77/75 49/48 |
Superpelog | 2.016 | 10.640 | 28.535 | [<1 0 7 2 5|, <0 2 -6 1 -2|] | 33/32 45/44 99/98 |
Negri | 2.038 | 9.594 | 26.190 | [<1 2 2 3 4|, <0 -4 3 -2 -5|] | 45/44 49/48 56/55 |
Inflated | 2.102 | 10.843 | 31.171 | [<3 0 7 -6 -4|, <0 1 0 3 3|] | 28/27 128/125 55/54 |
Injera | 2.153 | 7.728 | 23.124 | [<2 0 -8 -7 -12|, <0 1 4 4 6|] | 45/44 50/49 99/98 |
Negric | 2.198 | 9.886 | 30.617 | [<1 2 2 3 3|, <0 -4 3 -2 4|] | 33/32 77/75 49/48 |
Triforce | 2.201 | 8.427 | 26.152 | [<3 0 7 6 8|, <0 2 0 1 1|] | 77/75 128/125 56/55 |
Duodecim | 2.201 | 9.839 | 30.536 | [<12 19 28 34 0|, <0 0 0 0 1|] | 36/35 50/49 64/63 |
Meanundeci | 2.204 | 10.143 | 31.539 | [<1 0 -4 -13 5|, <0 1 4 10 -1|] | 33/32 77/75 55/54 |
Semafour | 2.212 | 9.111 | 28.510 | [<1 0 -4 2 5|, <0 2 8 1 -2|] | 33/32 49/48 55/54 |
Augene | 2.286 | 5.932 | 19.613 | [<3 0 7 18 20|, <0 1 0 -2 -2|] | 56/55 64/63 100/99 |
Godzilla | 2.343 | 8.404 | 28.947 | [<1 0 -4 2 -6|, <0 2 8 1 12|] | 45/44 49/48 81/80 |
Darjeeling | 2.347 | 8.002 | 27.648 | [<1 0 1 2 0|, <0 6 5 3 13|] | 77/75 49/48 55/54 |
Progress | 2.399 | 8.662 | 31.036 | [<1 0 5 6 4|, <0 3 -5 -6 -1|] | 77/75 56/55 64/63 |
Hedgehog | 2.439 | 6.273 | 23.095 | [<2 1 1 2 4|, <0 3 5 5 4|] | 50/49 55/54 99/98 |
Keemun | 2.468 | 7.298 | 27.410 | [<1 0 1 2 4|, <0 6 5 3 -2|] | 49/48 56/55 100/99 |
Porcupine | 2.478 | 5.703 | 21.562 | [<1 2 3 2 4|, <0 -3 -5 6 -4|] | 55/54 64/63 100/99 |
Pajara | 2.543 | 5.151 | 20.343 | [<2 0 11 12 26|, <0 1 -2 -2 -6|] | 50/49 99/98 176/175 |
Nautilus | 2.548 | 6.568 | 26.023 | [<1 2 3 3 4|, <0 -6 -10 -3 -8|] | 49/48 55/54 245/242 |
Pajarous | 2.718 | 6.427 | 28.349 | [<2 0 11 12 -9|, <0 1 -2 -2 5|] | 50/49 55/54 64/63 |
Telepathy | 2.864 | 5.631 | 27.109 | [<1 0 2 -1 -1|, <0 5 1 12 14|] | 55/54 99/98 176/175 |
Sensis | 2.98 | 5.578 | 28.680 | [<1 6 8 11 6|, <0 -7 -9 -13 -4|] | 56/55 100/99 245/243 |
Suprapyth | 3.011 | 6.264 | 32.768 | [<1 0 -12 6 13|, <0 1 9 -2 -6|] | 55/54 64/63 99/98 |
Porky | 3.020 | 5.186 | 27.268 | [<1 2 3 5 4|, <0 -3 -5 -16 -4|] | 55/54 100/99 225/224 |
Meantone | 3.031 | 3.218 | 17.027 | [<1 0 -4 -13 -25|, <0 1 4 10 18|] | 81/80 99/98 126/125 |
Ringo | 3.126 | 5.902 | 32.863 | [<1 1 5 4 2|, <0 2 -9 -4 5|] | 56/55 64/63 540/539 |
Orwell | 3.242 | 2.574 | 15.231 | [<1 0 3 1 3|, <0 7 -3 8 2|] | 99/98 121/120 176/175 |
Doublewide | 3.407 | 4.988 | 32.058 | [<2 1 3 4 8|, <0 4 3 3 -2|] | 50/49 875/864 99/98 |
Superpyth | 3.410 | 3.88 | 24.976 | [<1 0 -12 6 -22|, <0 1 9 -2 16|] | 64/63 100/99 245/243 |
Squares | 3.486 | 3.240 | 21.636 | [<1 3 8 6 7|, <0 -4 -16 -9 -10|] | 81/80 99/98 121/120 |
Quasisupra | 3.49 | 4.812 | 32.203 | [<1 0 23 6 13|, <0 1 -13 -2 -6|] | 64/63 99/98 121/120 |
Valentine | 3.651 | 2.313 | 16.687 | [<1 1 2 3 3|, <0 9 5 -3 7|] | 121/120 126/125 176/175 |
Magic | 3.715 | 2.741 | 20.352 | [<1 0 2 -1 6|, <0 5 1 12 -8|] | 100/99 245/243 225/224 |
Meanpop | 3.820 | 2.770 | 21.543 | [<1 0 -4 -13 24|, <0 1 4 10 -13|] | 81/80 126/125 540/539 |
Mohajira | 3.863 | 3.288 | 26.064 | [<1 1 0 6 2|, <0 2 8 -11 5|] | 81/80 121/120 176/175 |
Cassandra | 3.897 | 2.929 | 23.556 | [<1 0 15 25 32|, <0 1 -8 -14 -18|] | 245/242 100/99 225/224 |
Nusecond | 3.927 | 3.146 | 25.621 | [<1 3 4 5 5|, <0 -11 -13 -17 -12|] | 99/98 121/120 126/125 |
Migration | 3.935 | 3.123 | 25.516 | [<1 1 0 -3 2|, <0 2 8 20 5|] | 81/80 121/120 126/125 |
Mothra | 3.99 | 3.066 | 25.642 | [<1 1 0 3 5|, <0 3 12 -1 -8|] | 81/80 99/98 385/384 |
Octacot | 4.070 | 2.785 | 24.078 | [<1 1 1 2 2|, <0 8 18 11 20|] | 245/242 100/99 243/242 |
Myna | 4.127 | 1.903 | 16.842 | [<1 9 9 8 22|, <0 -10 -9 -7 -25|] | 126/125 176/175 243/242 |
Superkleismic | 4.137 | 2.888 | 25.659 | [<1 4 5 2 4|, <0 -9 -10 3 -2|] | 245/242 100/99 385/384 |
Würschmidt | 4.344 | 2.533 | 24.413 | [<1 7 3 15 17|, <0 -8 -1 -18 -20|] | 99/98 176/175 243/242 |
Miracle | 4.405 | 1.083 | 10.684 | [<1 1 3 3 2|, <0 6 -7 -2 15|] | 225/224 385/384 441/440 |
Mosura | 4.411 | 3.170 | 31.334 | [<1 1 0 3 -1|, <0 3 12 -1 23|] | 81/80 1029/1024 540/539 |
Sensus | 4.503 | 2.882 | 29.486 | [<1 6 8 11 23|, <0 -7 -9 -13 -31|] | 245/243 126/125 176/175 |
Shrutar | 4.530 | 2.563 | 26.489 | [<2 1 9 -2 8|, <0 2 -4 7 -1|] | 121/120 245/243 176/175 |
Revelation | 4.531 | 3.187 | 32.946 | [<1 1 3 3 5|, <0 6 -7 -2 -16|] | 99/98 176/175 1029/1024 |
Tritonic | 4.596 | 2.234 | 23.659 | [<1 4 -3 -3 2|, <0 -5 11 12 3|] | 121/120 225/224 441/440 |
Bunya | 4.833 | 2.722 | 31.332 | [<1 1 1 -1 2|, <0 4 9 26 10|] | 100/99 225/224 243/242 |
Diaschismic | 5.048 | 2.023 | 25.034 | [<2 0 11 31 45|, <0 1 -2 -8 -12|] | 126/125 5488/5445 176/175 |
Septimin | 5.089 | 2.496 | 31.309 | [<1 4 1 5 5|, <0 -11 6 -10 -7|] | 2401/2376 225/224 385/384 |
Witchcraft | 5.419 | 2.204 | 30.706 | [<1 0 2 -1 -7|, <0 5 1 12 33|] | 245/243 225/224 441/440 |
Thuja | 5.622 | 2.233 | 33.078 | [<1 8 5 -2 4|, <0 -12 -5 9 -1|] | 1344/1331 126/125 176/175 |
Hemiwur | 5.723 | 1.918 | 29.270 | [<1 15 4 7 11|, <0 -16 -2 -5 -9|] | 121/120 176/175 1375/1372 |
Rodan | 5.754 | 1.50 | 23.093 | [<1 1 -1 3 6|, <0 3 17 -1 -13|] | 245/243 385/384 441/440 |
Echidna | 5.898 | 1.62 | 25.987 | [<2 1 9 2 12|, <0 3 -6 5 -7|] | 176/175 896/891 540/539 |
Semisept | 5.969 | 1.373 | 22.476 | [<1 12 6 12 20|, <0 -17 -6 -15 -27|] | 1331/1323 176/175 540/539 |
Newspeak | 6.006 | 1.901 | 31.438 | [<1 0 3 1 -4|, <0 7 -3 8 33|] | 1728/1715 225/224 441/440 |
Hemififths | 6.148 | 1.367 | 23.498 | [<1 1 -5 -1 2|, <0 2 25 13 5|] | 896/891 243/242 441/440 |
Garibaldi | 6.365 | 1.504 | 27.396 | [<1 0 15 25 -33|, <0 1 -8 -14 23|] | 2200/2187 225/224 385/384 |
Wizard | 6.421 | 1.003 | 18.539 | [<2 1 5 2 8|, <0 6 -1 10 -3|] | 225/224 385/384 4000/3993 |
Slender | 6.727 | 1.269 | 25.342 | [<1 2 2 3 4|, <0 -13 10 -6 -17|] | 1331/1323 225/224 385/384 |
Compton | 6.767 | 1.102 | 22.235 | [<12 19 0 -22 -42|, <0 0 1 2 3|] | 225/224 4375/4356 441/440 |
Hemithirds | 7.040 | .882 | 19.003 | [<1 4 2 2 7|, <0 -15 2 5 -22|] | 3136/3125 385/384 441/440 |
Catakleismic | 7.254 | .965 | 21.849 | [<1 0 1 -3 9|, <0 6 5 22 -21|] | 225/224 385/384 4375/4374 |
Harry | 7.373 | .682 | 15.867 | [<2 4 7 7 9|, <0 -6 -17 -10 -15|] | 243/242 441/440 4000/3993 |
Pluto | 7.524 | 1.24 | 29.844 | [<1 5 15 15 2|, <0 -7 -26 -25 3|] | 896/891 1375/1372 540/539 |
Unidec | 7.532 | .642 | 15.479 | [<2 5 8 5 6|, <0 -6 -11 2 3|] | 385/384 441/440 12005/11979 |
Ennealimmic | 7.578 | .835 | 20.347 | [<9 1 1 12 -2|, <0 2 3 2 5|] | 4375/4356 243/242 441/440 |
Tritikleismic | 7.587 | .792 | 19.333 | [<3 0 3 10 8|, <0 6 5 -2 3|] | 385/384 441/440 4000/3993 |
Hemiwürschmidt | 7.793 | .825 | 21.069 | [<1 15 4 7 37|, <0 -16 -2 -5 -40|] | 243/242 3136/3125 441/440 |
Marvolo | 7.935 | 1.101 | 28.965 | [<1 2 1 1 2|, <0 -6 19 26 21|] | 225/224 441/440 4000/3993 |
Bikleismic | 8.191 | 1.057 | 29.319 | [<2 0 2 -6 -1|, <0 6 5 22 15|] | 225/224 4375/4356 243/242 |
Catalytic | 8.212 | 1.092 | 30.422 | [<1 0 1 -3 -10|, <0 6 5 22 51|] | 225/224 441/440 4375/4374 |
Enneaportent | 8.286 | 1.076 | 30.426 | [<9 0 28 11 24|, <0 2 -1 2 1|] | 225/224 385/384 12005/11979 |
Marvo | 8.731 | 1.027 | 31.685 | [<1 5 12 29 12|, <0 -6 -17 -46 -15|] | 225/224 243/242 4000/3993 |
Octoid | 9.170 | .421 | 14.097 | [<8 1 3 3 16|, <0 3 4 5 3|] | 1375/1372 540/539 4000/3993 |
Tertia | 9.182 | .899 | 30.171 | [<1 3 2 3 5|, <0 -22 5 -3 -24|] | 1331/1323 385/384 1375/1372 |
Guiron | 9.377 | .767 | 26.648 | [<1 1 7 3 -2|, <0 3 -24 -1 28|] | 10976/10935 385/384 441/440 |
Neominor | 9.493 | .788 | 27.959 | [<1 3 12 8 7|, <0 -6 -41 -22 -15|] | 243/242 35937/35840 441/440 |
Grendel | 9.729 | .537 | 19.845 | [<1 9 2 7 17|, <0 -23 1 -13 -42|] | 1375/1372 540/539 5632/5625 |
Hemiseven | 9.733 | .770 | 28.467 | [<1 4 14 2 -5|, <0 -6 -29 2 21|] | 19683/19600 385/384 441/440 |
Sqrtphi | 9.756 | .687 | 25.515 | [<1 12 11 16 17|, <0 -30 -25 -38 -39|] | 4375/4356 1375/1372 540/539 |
Commatic | 9.831 | .810 | 30.461 | [<2 3 4 5 6|, <0 5 19 18 27|] | 3388/3375 8019/8000 441/440 |
Sesquart | 9.891 | .772 | 29.306 | [<1 1 7 5 2|, <0 4 -32 -15 10|] | 243/242 16384/16335 441/440 |
Quadritikleismic | 10.315 | .575 | 23.406 | [<4 0 4 7 17|, <0 6 5 4 -3|] | 385/384 1375/1372 9801/9800 |
Mirkat | 10.575 | .521 | 22.126 | [<3 2 1 2 9|, <0 6 13 14 3|] | 8019/8000 1375/1372 540/539 |
Bisupermajor | 10.578 | .755 | 32.080 | [<2 1 6 1 8|, <0 8 -5 17 -4|] | 3388/3375 385/384 9801/9800 |
Cotritone | 10.735 | .740 | 32.225 | [<1 17 9 10 5|, <0 -30 -13 -14 -3|] | 385/384 1375/1372 4000/3993 |
Kwai | 11.134 | .567 | 26.219 | [<1 0 -50 -40 32|, <0 1 33 27 -18|] | 16384/16335 1375/1372 540/539 |
Triwell | 11.163 | .642 | 29.807 | [<1 7 0 1 13|, <0 -21 9 7 -37|] | 385/384 441/440 456533/455625 |
Supers | 11.476 | .580 | 28.240 | [<2 1 -12 2 -9|, <0 3 23 5 22|] | 5120/5103 540/539 4000/3993 |
Ennealiminal | 11.678 | .621 | 31.123 | [<9 1 1 12 51|, <0 2 3 2 -3|] | 385/384 1375/1372 4375/4374 |
Bischismic | 11.743 | .557 | 28.160 | [<2 0 30 69 102|, <0 1 -8 -20 -30|] | 3136/3125 8019/8000 441/440 |
Septisuperfourth | 12.086 | .464 | 24.619 | [<2 4 4 7 6|, <0 -9 7 -15 10|] | 540/539 4000/3993 5632/5625 |
Amity | 12.537 | .559 | 31.506 | [<1 3 6 -2 21|, <0 -5 -13 17 -62|] | 5120/5103 540/539 5632/5625 |
Quincy | 12.684 | .537 | 30.875 | [<1 2 3 3 4|, <0 -30 -49 -14 -39|] | 441/440 4000/3993 41503/41472 |
Octowerck | 13.282 | .486 | 30.159 | [<8 0 -11 14 15|, <0 3 7 2 3|] | 441/440 8019/8000 41503/41472 |
Hemiamity | 13.714 | .478 | 31.307 | [<2 1 -1 13 13|, <0 5 13 -17 -14|] | 5120/5103 3025/3024 4375/4374 |
Eris | 13.875 | .414 | 27.621 | [<1 10 0 6 20|, <0 -29 8 -11 -57|] | 1375/1372 540/539 65625/65536 |
Unthirds | 14.390 | .323 | 22.926 | [<1 29 33 25 25|, <0 -42 -47 -34 -33|] | 2401/2400, 3025/3024, 4000/3993 |
Alphaquarter | 14.588 | .408 | 29.638 | [<1 2 2 0 3|, <0 -9 7 61 10|] | 5120/5103 4000/3993 3025/3024 |
Hemiennealimmal | 14.648 | .0860 | 6.283 | [<18 0 -1 22 48|, <0 2 3 2 1|] | 2401/2400 3025/3024 4375/4374 |
Vishnu | 14.963 | .187 | 14.180 | [<2 4 5 10 10|, <0 -7 -3 -37 -26|] | 3025/3024 4375/4374 5632/5625 |
Quanharuk | 15.170 | .407 | 31.549 | [<1 0 15 12 -7|, <0 5 -40 -29 33|] | 1375/1372 540/539 32805/32768 |
Sternscape | 15.352 | .406 | 32.096 | [<6 3 2 6 11|, <0 6 11 10 9|] | 540/539 4000/3993 137781/137500 |
Pogo | 15.953 | .378 | 31.857 | [<2 1 22 2 25|, <0 3 -24 5 -25|] | 540/539 4000/3993 32805/32768 |
Junk temperaments
Name | Complexity | Error (¢) | Badness (k) | Mapping | Commas |
---|---|---|---|---|---|
.193 | 327.406 | 17.646 | [<1 2 2 3 0|, <0 0 0 0 1|] | 4/3 5/3 7/6 | |
.228 | 385.465 | 27.274 | [<1 2 2 0 3|, <0 0 0 1 0|] | 4/3 5/3 11/6 | |
.267 | 336.13 | 30.988 | [<1 2 2 0 1|, <0 0 0 1 1|] | 4/3 5/3 14/11 | |
.319 | 218.143 | 27.130 | [<1 2 0 3 1|, <0 0 1 0 1|] | 4/3 7/6 11/10 | |
.324 | 253.143 | 32.311 | [<1 2 0 0 1|, <0 0 1 1 1|] | 4/3 7/5 11/10 | |
.328 | 164.655 | 21.432 | [<1 0 1 1 2|, <0 1 1 1 1|] | 6/5 7/5 11/10 | |
.354 | 167.706 | 24.774 | [<1 0 2 1 2|, <0 1 0 1 1|] | 5/4 7/6 12/11 | |
.369 | 153.296 | 24.223 | [<1 0 2 1 3|, <0 1 0 1 0|] | 5/4 7/6 11/8 | |
.375 | 124.872 | 20.250 | [<2 3 5 6 0|, <0 0 0 0 1|] | 6/5 8/7 9/7 | |
.390 | 188.818 | 32.775 | [<1 0 2 3 2|, <0 1 0 0 1|] | 5/4 8/7 12/11 | |
.406 | 110.926 | 20.608 | [<1 0 1 3 2|, <0 1 1 0 1|] | 6/5 8/7 11/10 | |
.408 | 125.430 | 23.415 | [<1 0 1 0 2|, <0 1 1 2 1|] | 6/5 9/7 11/10 | |
.452 | 94.454 | 20.943 | [<1 0 -1 1 0|, <0 1 2 1 2|] | 7/6 10/9 11/9 | |
.455 | 110.141 | 24.702 | [<2 3 5 0 7|, <0 0 0 1 0|] | 6/5 9/8 11/10 | |
.471 | 104.885 | 24.915 | [<1 0 -1 1 2|, <0 1 2 1 1|] | 7/6 10/9 12/11 | |
.483 | 125.665 | 31.158 | [<1 0 1 0 -1|, <0 1 1 2 3|] | 6/5 9/7 22/21] | |
.508 | 117.970 | 31.811 | [<2 3 5 0 1|, <0 0 0 1 1|] | 6/5 9/8 22/21 | |
.549 | 103.420 | 31.715 | [<2 3 0 6 7|, <0 0 1 0 0|] | 8/7 9/7 12/11 | |
.550 | 86.198 | 26.496 | [<3 5 7 8 0|, <0 0 0 0 1|] | 7/6 10/9 16/15 | |
.557 | 60.511 | 18.993 | [<2 3 0 1 2|, <0 0 1 1 1|] | 9/8 11/10 15/14 | |
.567 | 71.691 | 23.207 | [<1 0 -1 3 2|, <0 1 2 0 1|] | 8/7 10/9 12/11 | |
.574 | 93.134 | 30.760 | [<1 0 -1 3 0|, <0 1 2 0 2|] | 8/7 10/9 11/9 | |
.575 | 60.585 | 20.049 | [<1 0 4 3 2|, <0 1 -1 0 1|] | 8/7 12/11 15/14 | |
.588 | 78.370 | 26.952 | [<1 0 4 3 5|, <0 1 -1 0 -1|] | 8/7 11/10 15/14 | |
.606 | 60.327 | 21.810 | [<2 3 0 1 7|, <0 0 1 1 0|] | 9/8 12/11 15/14 | |
.622 | 69.361 | 26.170 | [<1 0 -1 -2 2|, <0 1 2 3 1|] | 10/9 12/11 15/14 | |
.645 | 82.949 | 33.250 | [<1 0 -1 1 5|, <0 1 2 1 -1|] | 7/6 10/9 33/32 |