Basic abstract temperament translation code

From Xenharmonic Wiki
Jump to navigation Jump to search

(code language: Maple)


ech := proc(l)
# reduced row echelon form of listlist l
local M;
M := Matrix(l);
convert(LinearAlgebra[ReducedRowEchelonForm](M), listlist) end:

relpar :=  proc(u, v)
# relative parity of two permutations
local t;
t := table('antisymmetric');
t[op(u)] := 1;
t[op(v)];
end:

pari := proc(u)
# parity of permutation u
local v;
v := sort(u);
relpar(u, v) end:

zerlist := proc(n)
# list of n 0s
local i, u;
u := NULL;
for i from 1 to n do
u := u,0 od;
[u] end:

denomlist := proc(w)
map(denom, w) end:

cleardenom := proc(w)
local n;
n := ilcm(op(denomlist(w)));
n * w end:

vec2e := proc(w)
# rref temperament identifier from val list or projection matrix w
local i, u, v, z;
u := ech(w);
z := NULL;
for i from 1 to nops(u) do
v := u[i];
if not convert(v, set)={0} then
z := z,v fi od:
[z] end:

wedgie := proc(w)
# reduction of multivector w to wedgie
local i, n, u;
u := cleardenom(w);
n := igcd(op(u));
if n=0 then RETURN(w) fi;
u := u/n;
for i from 1 to nops(w) do
if not u[i]=0 then
if u[i]>0 then RETURN(u) fi;
RETURN(-u) fi od end:

mvec := proc(l)
# multivector wedge product of vector list l
local c, i, j, k, q, r, t, u, v, w;
u := combinat[permute](nops(l));
c := combinat[choose](nops(l[1]), nops(l));
w := zerlist(nops(c));
for i from 1 to nops(c) do
t := c[i];
r := 0;
for j from 1 to nops(u) do
v := u[j];
q := pari(v);
for k from 1 to nops(v) do
q := q * l[v[k], t[k]] od;
r := r+q od;
w[i] := w[i]+r od;
w end:

wedgie2e := proc(w, n, p)
# rank n p-limit multival to rref
local b, c, i, j, k, m, u, v, x, y, z;
m := numtheory[pi](p);
b := combinat[choose](m, n);
c := combinat[choose](m, n-1);
z := NULL;
for i from 1 to nops(c) do
u := c[i];
v := NULL;
for j from 1 to m do
y := [op(u), j];
if nops(convert(y, set))<n then v:=v,0 fi;
x := sort(y);
for k from 1 to nops(b) do
if x=b[k] then v := v,relpar(b[k], y)*w[k] fi od od;
v := [v];
z := z,v od;
vec2e([z]) end:

e2wedgie := proc(l)
# rref l to wedgie
wedgie(mvec(l)) end:

e2frob := proc(l)
# rref or normal val list to Frobenius projection map
local U, V;
U := Matrix(l);
V := LinearAlgebra[Transpose](U);
convert(V.(U.V)^(-1).U, listlist) end:

dualproj := proc(w)
# dual projection map
convert(LinearAlgebra[IdentityMatrix](nops(w[1])), listlist)-w end:

norc2e := proc(l)
# normal comma list to rref
local M, N;
M := Matrix(l);
N := LinearAlgebra[NullSpace](M);
N := convert(N, list);
N := Matrix(N);
N := LinearAlgebra[Transpose](N);
ech(convert(N, listlist)) end: