95ed4
Jump to navigation
Jump to search
Prime factorization
5 × 19
Step size
25.2632¢
Octave
48\95ed4 (1212.63¢)
Twelfth
75\95ed4 (1894.74¢) (→15\19ed4)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 93ed4 | 95ed4 | 97ed4 → |
95 equal divisions of the 4th harmonic (abbreviated 95ed4) is a nonoctave tuning system that divides the interval of 4/1 into 95 equal parts of about 25.3 ¢ each. Each step represents a frequency ratio of 41/95, or the 95th root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 25.263 | |
2 | 50.526 | |
3 | 75.789 | 23/22 |
4 | 101.053 | 18/17, 35/33 |
5 | 126.316 | 14/13 |
6 | 151.579 | |
7 | 176.842 | 41/37 |
8 | 202.105 | |
9 | 227.368 | |
10 | 252.632 | 22/19 |
11 | 277.895 | 34/29 |
12 | 303.158 | 25/21 |
13 | 328.421 | 23/19 |
14 | 353.684 | |
15 | 378.947 | |
16 | 404.211 | 43/34 |
17 | 429.474 | |
18 | 454.737 | 13/10 |
19 | 480 | 29/22, 33/25 |
20 | 505.263 | |
21 | 530.526 | 19/14 |
22 | 555.789 | |
23 | 581.053 | 7/5 |
24 | 606.316 | |
25 | 631.579 | |
26 | 656.842 | 19/13 |
27 | 682.105 | 43/29 |
28 | 707.368 | |
29 | 732.632 | 29/19 |
30 | 757.895 | |
31 | 783.158 | 11/7 |
32 | 808.421 | |
33 | 833.684 | |
34 | 858.947 | 23/14, 41/25 |
35 | 884.211 | 5/3 |
36 | 909.474 | 22/13 |
37 | 934.737 | |
38 | 960 | |
39 | 985.263 | 23/13, 30/17 |
40 | 1010.526 | |
41 | 1035.789 | |
42 | 1061.053 | |
43 | 1086.316 | |
44 | 1111.579 | 19/10 |
45 | 1136.842 | |
46 | 1162.105 | 43/22 |
47 | 1187.368 | |
48 | 1212.632 | |
49 | 1237.895 | |
50 | 1263.158 | 29/14 |
51 | 1288.421 | |
52 | 1313.684 | |
53 | 1338.947 | 13/6 |
54 | 1364.211 | 11/5 |
55 | 1389.474 | 29/13 |
56 | 1414.737 | 43/19 |
57 | 1440 | 23/10, 39/17 |
58 | 1465.263 | 7/3 |
59 | 1490.526 | |
60 | 1515.789 | |
61 | 1541.053 | |
62 | 1566.316 | 42/17 |
63 | 1591.579 | |
64 | 1616.842 | |
65 | 1642.105 | |
66 | 1667.368 | |
67 | 1692.632 | |
68 | 1717.895 | |
69 | 1743.158 | 41/15 |
70 | 1768.421 | 25/9 |
71 | 1793.684 | 31/11 |
72 | 1818.947 | |
73 | 1844.211 | 29/10 |
74 | 1869.474 | |
75 | 1894.737 | |
76 | 1920 | |
77 | 1945.263 | 43/14 |
78 | 1970.526 | |
79 | 1995.789 | 19/6 |
80 | 2021.053 | |
81 | 2046.316 | |
82 | 2071.579 | 43/13 |
83 | 2096.842 | |
84 | 2122.105 | |
85 | 2147.368 | |
86 | 2172.632 | |
87 | 2197.895 | |
88 | 2223.158 | |
89 | 2248.421 | 11/3 |
90 | 2273.684 | |
91 | 2298.947 | |
92 | 2324.211 | 23/6 |
93 | 2349.474 | 35/9 |
94 | 2374.737 | |
95 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.6 | -7.2 | +0.0 | -7.4 | +5.4 | -8.8 | +12.6 | +10.8 | +5.3 | -8.2 | -7.2 |
Relative (%) | +50.0 | -28.6 | +0.0 | -29.2 | +21.4 | -34.9 | +50.0 | +42.9 | +20.8 | -32.3 | -28.6 | |
Steps (reduced) |
48 (48) |
75 (75) |
95 (0) |
110 (15) |
123 (28) |
133 (38) |
143 (48) |
151 (56) |
158 (63) |
164 (69) |
170 (75) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.8 | +3.8 | +10.7 | +0.0 | -3.9 | -1.8 | +5.6 | -7.4 | +9.2 | +4.5 | +3.3 |
Relative (%) | +22.9 | +15.1 | +42.3 | +0.0 | -15.4 | -7.1 | +22.3 | -29.2 | +36.5 | +17.7 | +13.1 | |
Steps (reduced) |
176 (81) |
181 (86) |
186 (91) |
190 (0) |
194 (4) |
198 (8) |
202 (12) |
205 (15) |
209 (19) |
212 (22) |
215 (25) |