933edo
Jump to navigation
Jump to search
Prime factorization
3 × 311
Step size
1.28617¢
Fifth
546\933 (702.251¢) (→182\311)
Semitones (A1:m2)
90:69 (115.8¢ : 88.75¢)
Consistency limit
3
Distinct consistency limit
3
← 932edo | 933edo | 934edo → |
933 equal divisions of the octave (933edo), or 933-tone equal temperament (933tet), 933 equal temperament (933et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 933 equal parts of about 1.29 ¢ each.
Theory
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.000 | +0.296 | -0.462 | -0.337 | +0.451 | +0.630 | +0.511 | -0.407 | -0.622 | -0.638 | -0.341 | -0.540 |
relative (%) | +0 | +23 | -36 | -26 | +35 | +49 | +40 | -32 | -48 | -50 | -27 | -42 | |
Steps (reduced) |
933 (0) |
1479 (546) |
2166 (300) |
2619 (753) |
3228 (429) |
3453 (654) |
3814 (82) |
3963 (231) |
4220 (488) |
4532 (800) |
4622 (890) |
4860 (195) |
As the triple of 311edo, it offers some correction to primes like 17, but just like with 622edo it's consistency limit is drastically reduced when compared to 311edo.