7ed9/5

From Xenharmonic Wiki
Jump to navigation Jump to search
← 6ed9/5 7ed9/5 8ed9/5 →
Prime factorization 7 (prime)
Step size 145.371¢ 
Octave 8\7ed9/5 (1162.97¢)
Twelfth 13\7ed9/5 (1889.82¢)
(convergent)
Consistency limit 3
Distinct consistency limit 2

7 equal divisions of 9/5 (abbreviated 7ed9/5) is a nonoctave tuning system that divides the interval of 9/5 into 7 equal parts of about 145⁠ ⁠¢ each. Each step represents a frequency ratio of (9/5)1/7, or the 7th root of 9/5.

Intervals

Step Interval (¢) JI approximated Simplified ratios
1 145.37 37/34, 48/44, 52/48 12/11, 13/12
2 290.74 19/16, 52/44 13/11
3 436.11 40/31, 44/34, 52/40 22/17, 13/10
4 581.48 56/40 7/5
5 726.85 29/19, 52/34 26/17
6 872.23 56/34 28/17
7 1017.60 9/5, 29/16
8 1162.97 31/16, 37/19
9 1308.34 34/16 17/8
10 1453.71 37/16, 44/19
11 1599.08 40/16, 48/19 5/2
12 1744.45 44/16, 52/19 11/4
13 1889.82 3/1, 56/19
14 2035.19 29/9, 52/16 13/4

The subgroup interpretation used is 9/5.3.16.19.29.31.34.37.40.44.48.52.56. Other interpretations are possible. Don't forget that fractions can multiply.

Harmonics

Approximation of harmonics in 7ed9/5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -37.0 -12.1 +71.3 -24.3 -49.2 -25.3 +34.3 -24.3 -61.3 +64.4 +59.2
Relative (%) -25.5 -8.3 +49.1 -16.7 -33.8 -17.4 +23.6 -16.7 -42.2 +44.3 +40.7
Steps
(reduced)
8
(1)
13
(6)
17
(3)
19
(5)
21
(0)
23
(2)
25
(4)
26
(5)
27
(6)
29
(1)
30
(2)
Approximation of harmonics in 7ed9/5
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +66.0 -62.3 -36.4 -2.8 +37.7 -61.3 -9.5 +47.0 -37.4 +27.4 -49.6
Relative (%) +45.4 -42.9 -25.0 -1.9 +25.9 -42.2 -6.6 +32.4 -25.7 +18.9 -34.1
Steps
(reduced)
31
(3)
31
(3)
32
(4)
33
(5)
34
(6)
34
(6)
35
(0)
36
(1)
36
(1)
37
(2)
37
(2)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.