65536edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 65535edo65536edo65537edo →
Prime factorization 216
Step size 0.0183105¢
Fifth 38336\65536 (701.953¢) (→599\1024)
Semitones (A1:m2) 6208:4928 (113.7¢ : 90.23¢)
Consistency limit 23
Distinct consistency limit 23

65536 equal divisions of the octave (65536edo), or 65536-tone equal temperament (65536tet), 65536 equal temperament (65536et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 65536 equal parts of about 0.0183 ¢ each.

Theory

Approximation of prime harmonics in 65536edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.00000 -0.00188 +0.00220 +0.00344 -0.00569 -0.00032 +0.00065 -0.00325 -0.00286 +0.00655 -0.00383
relative (%) +0 -10 +12 +19 -31 -2 +4 -18 -16 +36 -21
Steps
(reduced)
65536
(0)
103872
(38336)
152170
(21098)
183983
(52911)
226717
(30109)
242512
(45904)
267876
(5732)
278392
(16248)
296456
(34312)
318373
(56229)
324678
(62534)

This is the 16th power of two EDO, and the first such EDO to be consistent in the 23-odd-limit.