65536edo
Jump to navigation
Jump to search
Prime factorization
216
Step size
0.0183105¢
Fifth
38336\65536 (701.953¢) (→599\1024)
Semitones (A1:m2)
6208:4928 (113.7¢ : 90.23¢)
Consistency limit
23
Distinct consistency limit
23
← 65535edo | 65536edo | 65537edo → |
65536 equal divisions of the octave (65536edo), or 65536-tone equal temperament (65536tet), 65536 equal temperament (65536et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 65536 equal parts of about 0.0183 ¢ each.
Theory
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.00000 | -0.00188 | +0.00220 | +0.00344 | -0.00569 | -0.00032 | +0.00065 | -0.00325 | -0.00286 | +0.00655 | -0.00383 |
relative (%) | +0 | -10 | +12 | +19 | -31 | -2 | +4 | -18 | -16 | +36 | -21 | |
Steps (reduced) |
65536 (0) |
103872 (38336) |
152170 (21098) |
183983 (52911) |
226717 (30109) |
242512 (45904) |
267876 (5732) |
278392 (16248) |
296456 (34312) |
318373 (56229) |
324678 (62534) |
This is the 16th power of two EDO, and the first such EDO to be consistent in the 23-odd-limit.