63ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 62ed7/3 63ed7/3 64ed7/3 →
Prime factorization 32 × 7
Step size 23.2837¢ 
Octave 52\63ed7/3 (1210.75¢)
Twelfth 82\63ed7/3 (1909.26¢)
Consistency limit 3
Distinct consistency limit 3

63 equal divisions of 7/3 (abbreviated 63ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 63 equal parts of about 23.3⁠ ⁠¢ each. Each step represents a frequency ratio of (7/3)1/63, or the 63rd root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 23.3
2 46.6 35/34
3 69.9 26/25
4 93.1
5 116.4 15/14, 31/29
6 139.7
7 163
8 186.3 10/9
9 209.6
10 232.8
11 256.1 22/19
12 279.4
13 302.7 25/21
14 326
15 349.3
16 372.5 26/21
17 395.8 34/27
18 419.1
19 442.4 22/17
20 465.7 17/13
21 489
22 512.2 35/26
23 535.5 34/25
24 558.8
25 582.1 7/5
26 605.4
27 628.7 33/23
28 651.9
29 675.2
30 698.5 3/2
31 721.8
32 745.1
33 768.4 14/9
34 791.6
35 814.9
36 838.2 34/21
37 861.5
38 884.8 5/3
39 908.1 22/13
40 931.3
41 954.6 26/15, 33/19
42 977.9
43 1001.2 25/14
44 1024.5
45 1047.8
46 1071 13/7
47 1094.3
48 1117.6
49 1140.9 27/14
50 1164.2
51 1187.5
52 1210.8
53 1234
54 1257.3
55 1280.6 21/10, 23/11
56 1303.9
57 1327.2
58 1350.5
59 1373.7
60 1397
61 1420.3 34/15
62 1443.6
63 1466.9 7/3

Harmonics

Approximation of harmonics in 63ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +10.8 +7.3 -1.8 +7.7 -5.2 +7.3 +9.0 -8.7 -4.8 -6.8 +5.5
Relative (%) +46.2 +31.4 -7.7 +33.2 -22.5 +31.4 +38.5 -37.2 -20.6 -29.3 +23.7
Steps
(reduced)
52
(52)
82
(19)
103
(40)
120
(57)
133
(7)
145
(19)
155
(29)
163
(37)
171
(45)
178
(52)
185
(59)
Approximation of harmonics in 63ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +6.7 -5.2 -8.3 -3.6 +7.9 +2.1 +1.6 +5.9 -8.7 +3.9 -3.2
Relative (%) +28.6 -22.5 -35.4 -15.3 +33.9 +8.9 +6.9 +25.5 -37.2 +16.9 -13.7
Steps
(reduced)
191
(2)
196
(7)
201
(12)
206
(17)
211
(22)
215
(26)
219
(30)
223
(34)
226
(37)
230
(41)
233
(44)