63ed4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 61ed4 63ed4 65ed4 →
Prime factorization 32 × 7
Step size 38.0952¢ 
Octave 32\63ed4 (1219.05¢)
Twelfth 50\63ed4 (1904.76¢)
Consistency limit 1
Distinct consistency limit 1

63 equal divisions of the 4th harmonic (abbreviated 63ed4) is a nonoctave tuning system that divides the interval of 4/1 into 63 equal parts of about 38.1⁠ ⁠¢ each. Each step represents a frequency ratio of 41/63, or the 63rd root of 4.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 38.1
2 76.2
3 114.3 31/29
4 152.4
5 190.5 19/17
6 228.6
7 266.7
8 304.8 25/21
9 342.9
10 381
11 419 14/11
12 457.1 13/10
13 495.2
14 533.3 15/11
15 571.4
16 609.5 27/19
17 647.6
18 685.7
19 723.8 35/23
20 761.9 14/9
21 800 27/17
22 838.1
23 876.2
24 914.3 22/13
25 952.4 33/19
26 990.5
27 1028.6
28 1066.7
29 1104.8 17/9
30 1142.9 29/15
31 1181
32 1219
33 1257.1 29/14, 31/15
34 1295.2 19/9
35 1333.3
36 1371.4
37 1409.5
38 1447.6 30/13
39 1485.7 33/14
40 1523.8
41 1561.9
42 1600
43 1638.1
44 1676.2 29/11
45 1714.3
46 1752.4
47 1790.5 31/11
48 1828.6
49 1866.7
50 1904.8 3/1
51 1942.9
52 1981
53 2019
54 2057.1 23/7
55 2095.2
56 2133.3
57 2171.4
58 2209.5
59 2247.6 11/3
60 2285.7
61 2323.8
62 2361.9
63 2400

Harmonics

Approximation of harmonics in 63ed4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +19.0 +2.8 +0.0 -5.4 -16.2 -16.4 +19.0 +5.6 +13.7 +1.1 +2.8
Relative (%) +50.0 +7.4 +0.0 -14.1 -42.6 -43.2 +50.0 +14.7 +35.9 +2.8 +7.4
Steps
(reduced)
32
(32)
50
(50)
63
(0)
73
(10)
81
(18)
88
(25)
95
(32)
100
(37)
105
(42)
109
(46)
113
(50)
Approximation of harmonics in 63ed4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +16.6 +2.6 -2.6 +0.0 +9.3 -13.4 +7.2 -5.4 -13.6 -18.0 -18.8
Relative (%) +43.6 +6.8 -6.7 +0.0 +24.5 -35.3 +19.0 -14.1 -35.8 -47.2 -49.2
Steps
(reduced)
117
(54)
120
(57)
123
(60)
126
(0)
129
(3)
131
(5)
134
(8)
136
(10)
138
(12)
140
(14)
142
(16)