58ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 57ed7/3 58ed7/3 59ed7/3 →
Prime factorization 2 × 29
Step size 25.2909¢ 
Octave 47\58ed7/3 (1188.67¢)
Twelfth 75\58ed7/3 (1896.82¢)
Consistency limit 3
Distinct consistency limit 3

58 equal divisions of 7/3 (abbreviated 58ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 58 equal parts of about 25.3 ¢ each. Each step represents a frequency ratio of (7/3)1/58, or the 58th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 25.3
2 50.6 34/33
3 75.9 22/21
4 101.2
5 126.5
6 151.7
7 177
8 202.3
9 227.6
10 252.9
11 278.2
12 303.5 25/21, 31/26
13 328.8 23/19
14 354.1 27/22
15 379.4
16 404.7 29/23
17 429.9
18 455.2
19 480.5 33/25
20 505.8
21 531.1 34/25
22 556.4
23 581.7 7/5
24 607
25 632.3
26 657.6 19/13
27 682.9
28 708.1
29 733.4 26/17, 29/19
30 758.7
31 784 11/7
32 809.3
33 834.6 34/21
34 859.9
35 885.2 5/3
36 910.5
37 935.8
38 961.1
39 986.3 23/13
40 1011.6
41 1036.9 31/17
42 1062.2
43 1087.5
44 1112.8
45 1138.1 27/14
46 1163.4
47 1188.7
48 1214
49 1239.3
50 1264.5
51 1289.8
52 1315.1 15/7
53 1340.4
54 1365.7 11/5
55 1391 29/13
56 1416.3 34/15
57 1441.6
58 1466.9 7/3

Harmonics

Approximation of harmonics in 58ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -11.3 -5.1 +2.6 -4.3 +8.8 -5.1 -8.7 -10.3 +9.6 -3.6 -2.5
Relative (%) -44.8 -20.3 +10.4 -17.1 +34.9 -20.3 -34.4 -40.6 +38.1 -14.3 -9.9
Steps
(reduced)
47
(47)
75
(17)
95
(37)
110
(52)
123
(7)
133
(17)
142
(26)
150
(34)
158
(42)
164
(48)
170
(54)
Approximation of harmonics in 58ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +10.7 +8.8 -9.5 +5.3 +1.5 +3.7 +11.2 -1.7 -10.3 +10.3 +9.3
Relative (%) +42.2 +34.9 -37.4 +20.8 +5.8 +14.6 +44.5 -6.7 -40.6 +40.9 +36.6
Steps
(reduced)
176
(2)
181
(7)
185
(11)
190
(16)
194
(20)
198
(24)
202
(28)
205
(31)
208
(34)
212
(38)
215
(41)