50562edo
Jump to navigation
Jump to search
Prime factorization
2 × 32 × 532
Step size
0.0237332¢
Fifth
29577\50562 (701.958¢) (→9859\16854)
Semitones (A1:m2)
4791:3801 (113.7¢ : 90.21¢)
Consistency limit
5
Distinct consistency limit
5
← 50561edo | 50562edo | 50563edo → |
50562 equal divisions of the octave (abbreviated 50562edo or 50562ed2), also called 50562-tone equal temperament (50562tet) or 50562 equal temperament (50562et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 50562 equal parts of about 0.0237 ¢ each. Each step represents a frequency ratio of 21/50562, or the 50562nd root of 2.
Theory
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0000 | +0.0030 | -0.0078 | -0.0114 | +0.0052 | +0.0087 | -0.0070 | +0.0069 | -0.0081 | -0.0056 | -0.0018 |
Relative (%) | +0.0 | +12.6 | -32.8 | -48.0 | +21.8 | +36.7 | -29.6 | +28.9 | -34.0 | -23.5 | -7.4 | |
Steps (reduced) |
50562 (0) |
80139 (29577) |
117401 (16277) |
141945 (40821) |
174916 (23230) |
187102 (35416) |
206670 (4422) |
214784 (12536) |
228720 (26472) |
245629 (43381) |
250494 (48246) |
This EDO only has a consistency level of 5.
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |