50562edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 50561edo50562edo50563edo →
Prime factorization 2 × 32 × 532
Step size 0.0237332¢
Fifth 29577\50562 (701.958¢) (→9859\16854)
Semitones (A1:m2) 4791:3801 (113.7¢ : 90.21¢)
Consistency limit 5
Distinct consistency limit 5

50562 equal divisions of the octave (abbreviated 50562edo), or 50562-tone equal temperament (50562tet), 50562 equal temperament (50562et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 50562 equal parts of about 0.0237 ¢ each. Each step of 50562edo represents a frequency ratio of 21/50562, or the 50562nd root of 2.

Theory

Approximation of prime harmonics in 50562edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.0000 +0.0030 -0.0078 -0.0114 +0.0052 +0.0087 -0.0070 +0.0069 -0.0081 -0.0056 -0.0018
relative (%) +0 +13 -33 -48 +22 +37 -30 +29 -34 -24 -7
Steps
(reduced)
50562
(0)
80139
(29577)
117401
(16277)
141945
(40821)
174916
(23230)
187102
(35416)
206670
(4422)
214784
(12536)
228720
(26472)
245629
(43381)
250494
(48246)

This EDO only has a consistency level of 5.


This page is a stub. You can help the Xenharmonic Wiki by expanding it.