37ed8
Jump to navigation
Jump to search
Prime factorization
37 (prime)
Step size
97.2973¢
Octave
12\37ed8 (1167.57¢)
Twelfth
20\37ed8 (1945.95¢)
Consistency limit
1
Distinct consistency limit
1
← 36ed8 | 37ed8 | 38ed8 → |
37ed8 is an equal tuning that divides the 8/1 ratio (triple-octave, octuple, twenty-second) into 37 equal steps of approximately 97.297 cents. It stands out as an 8.9.10.14.22.26.17/2.19/2 subgroup tuning. This is an another approach for 97.5cET.
Intervals
Steps | Cents | Ratio approximated |
---|---|---|
1 | 97.297 | 17/16, 18/17, 19/18, 20/19, 52/49, 55/52 |
2 | 194.595 | 9/8, 10/9, 19/17, 28/25, 49/44, 55/49 |
3 | 291.892 | 13/11, 19/16, 20/17, 45/38, 85/72, 77/65 |
4 | 389.189 | 5/4 |
5 | 486.486 | 25/19, 45/34 |
6 | 583.784 | 7/5, 25/18, 45/32 |
7 | 681.081 | 28/19, 25/17 |
8 | 778.378 | 11/7, 14/9, 25/16 |
9 | 875.676 | 28/17 |
10 | 972.973 | 7/4, 44/25 |
11 | 1070.270 | 13/7, 35/19 |
12 | 1167.568 | 49/25, 35/18, 55/28 |
13 | 1264.865 | 35/17, 52/25 |
14 | 1362.162 | 11/5, 35/16 |
15 | 1459.459 | 44/19, 65/28 |
16 | 1556.757 | 22/9, 49/20, 32/13 |
17 | 1654.054 | 44/17, 49/19, 13/5, 34/13 |
18 | 1751.351 | 11/4, 36/13, 49/18, 52/19 |
19 | 1848.649 | 26/9, 32/11, 38/13, 49/17, 55/19 |
20 | 1945.946 | 34/11, 40/13, 49/16, 52/17, 55/18, 77/25 |
21 | 2043.243 | 13/4, 36/11, 55/17 |
22 | 2140.541 | 38/11, 55/16, 65/19 |
23 | 2237.838 | 40/11, 65/18, 91/25 |
24 | 2335.135 | 65/17, 77/20, 50/13 |
25 | 2432.432 | 65/16, 77/19 |
26 | 2529.730 | 56/13, 77/18 |
27 | 2627.027 | 32/7, 77/17, 50/11, 91/20 |
28 | 2724.324 | 34/7, 77/16, 91/19 |
29 | 2821.622 | 36/7, 56/11, 91/18 |
30 | 2918.919 | 38/7, 91/17 |
31 | 3016.216 | 40/7, 91/16 |
32 | 3113.514 | 85/14 |
33 | 3210.811 | 32/5, 45/7 |
34 | 3308.108 | 34/5, 88/13 |
35 | 3405.405 | 36/5, 64/9, 50/7 |
36 | 3502.703 | 38/5, 68/9 |
37 | 3600.000 | 8/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -32.4 | +44.0 | +32.4 | +35.3 | +11.6 | +36.6 | +0.0 | -9.3 | +2.9 | +32.5 | -20.9 |
Relative (%) | -33.3 | +45.2 | +33.3 | +36.3 | +11.9 | +37.6 | +0.0 | -9.6 | +3.0 | +33.4 | -21.5 | |
Steps (reduced) |
12 (12) |
20 (20) |
25 (25) |
29 (29) |
32 (32) |
35 (35) |
37 (0) |
39 (2) |
41 (4) |
43 (6) |
44 (7) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +35.1 | +4.1 | -18.0 | -32.4 | -40.1 | -41.7 | -38.1 | -29.6 | -16.7 | +0.0 | +20.4 |
Relative (%) | +36.1 | +4.3 | -18.5 | -33.3 | -41.2 | -42.9 | -39.1 | -30.4 | -17.2 | +0.0 | +20.9 | |
Steps (reduced) |
46 (9) |
47 (10) |
48 (11) |
49 (12) |
50 (13) |
51 (14) |
52 (15) |
53 (16) |
54 (17) |
55 (18) |
56 (19) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |