37ed4

From Xenharmonic Wiki
Jump to navigation Jump to search
← 35ed437ed439ed4 →
Prime factorization 37 (prime)
Step size 64.8649¢ 
Octave 19\37ed4 (1232.43¢)
Twelfth 29\37ed4 (1881.08¢)
Consistency limit 1
Distinct consistency limit 1

37ED4 is an equal tuning which divides the 4/1 double octave into 37 steps of approximately 64.865¢. As an ED4 system, it is equivalent to taking every other tone of 37edo. All the intervals of 37ED4 are thus the same as or an octave away from a corresponding interval in 37edo.

65cET is a slightly stretched version of 37ED4, in which the 37th degree is 5¢ sharp of 4/1.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 64.865 26/25
2 129.73
3 194.595 19/17, 29/26
4 259.459 7/6, 22/19, 29/25
5 324.324 23/19
6 389.189
7 454.054 22/17
8 518.919 23/17
9 583.784 7/5
10 648.649
11 713.514
12 778.378 11/7
13 843.243
14 908.108
15 972.973
16 1037.838
17 1102.703
18 1167.568
19 1232.432
20 1297.297
21 1362.162 11/5
22 1427.027 25/11
23 1491.892 26/11
24 1556.757
25 1621.622
26 1686.486
27 1751.351
28 1816.216
29 1881.081
30 1945.946
31 2010.811
32 2075.676
33 2140.541
34 2205.405 25/7
35 2270.27 26/7
36 2335.135
37 2400

Harmonics

Approximation of harmonics in 37ed4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +32.4 -20.9 +0.0 +2.9 +11.6 +4.1 +32.4 +23.1 -29.6 +0.0 -20.9
Relative (%) +50.0 -32.2 +0.0 +4.4 +17.8 +6.4 +50.0 +35.6 -45.6 +0.1 -32.2
Steps
(reduced)
19
(19)
29
(29)
37
(0)
43
(6)
48
(11)
52
(15)
56
(19)
59
(22)
61
(24)
64
(27)
66
(29)
Approximation of harmonics in 37ed4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -29.7 -28.3 -18.0 +0.0 +24.8 -9.3 +26.8 +2.9 -16.7 -32.4 +20.4
Relative (%) -45.8 -43.6 -27.7 +0.0 +38.2 -14.4 +41.3 +4.4 -25.8 -49.9 +31.4
Steps
(reduced)
68
(31)
70
(33)
72
(35)
74
(0)
76
(2)
77
(3)
79
(5)
80
(6)
81
(7)
82
(8)
84
(10)

Music