372edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 371edt372edt373edt →
Prime factorization 22 × 3 × 31
Step size 5.11278¢ 
Octave 235\372edt (1201.5¢)
Consistency limit 2
Distinct consistency limit 2

372 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 372edt or 372ed3), is a nonoctave tuning system that divides the interval of 3/1 into 372 equal parts of about 5.11 ¢ each. Each step represents a frequency ratio of 31/372, or the 372nd root of 3.

Harmonics

Approximation of prime harmonics in 372edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +1.50 +0.00 +0.15 +0.50 +0.26 +2.48 -1.80 -0.07 +1.50
Relative (%) +29.4 +0.0 +3.0 +9.7 +5.1 +48.5 -35.2 -1.4 +29.3
Steps
(reduced)
235
(235)
372
(0)
545
(173)
659
(287)
812
(68)
869
(125)
959
(215)
997
(253)
1062
(318)
Approximation of odd harmonics in 372edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
Error Absolute (¢) +0.31 +0.00 -1.01 +1.13 +0.26 +0.65 +1.59 +2.48 -2.30 +2.17 +0.15 +1.56 +1.00 -1.80 -1.93 +0.41
Relative (%) +6.0 +0.0 -19.7 +22.1 +5.1 +12.7 +31.1 +48.5 -44.9 +42.4 +3.0 +30.5 +19.5 -35.2 -37.7 +8.1
Steps
(reduced)
1090
(346)
1116
(0)
1140
(24)
1163
(47)
1184
(68)
1204
(88)
1223
(107)
1241
(125)
1257
(141)
1274
(158)
1289
(173)
1304
(188)
1318
(202)
1331
(215)
1344
(228)
1357
(241)