372edt
Jump to navigation
Jump to search
Prime factorization
22 × 3 × 31
Step size
5.11278¢
Octave
235\372edt (1201.5¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 371edt | 372edt | 373edt → |
372 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 372edt or 372ed3), is a nonoctave tuning system that divides the interval of 3/1 into 372 equal parts of about 5.11 ¢ each. Each step represents a frequency ratio of 31/372, or the 372nd root of 3.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.50 | +0.00 | +0.15 | +0.50 | +0.26 | +2.48 | -1.80 | -0.07 | +1.50 |
Relative (%) | +29.4 | +0.0 | +3.0 | +9.7 | +5.1 | +48.5 | -35.2 | -1.4 | +29.3 | |
Steps (reduced) |
235 (235) |
372 (0) |
545 (173) |
659 (287) |
812 (68) |
869 (125) |
959 (215) |
997 (253) |
1062 (318) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | 55 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.31 | +0.00 | -1.01 | +1.13 | +0.26 | +0.65 | +1.59 | +2.48 | -2.30 | +2.17 | +0.15 | +1.56 | +1.00 | -1.80 | -1.93 | +0.41 |
Relative (%) | +6.0 | +0.0 | -19.7 | +22.1 | +5.1 | +12.7 | +31.1 | +48.5 | -44.9 | +42.4 | +3.0 | +30.5 | +19.5 | -35.2 | -37.7 | +8.1 | |
Steps (reduced) |
1090 (346) |
1116 (0) |
1140 (24) |
1163 (47) |
1184 (68) |
1204 (88) |
1223 (107) |
1241 (125) |
1257 (141) |
1274 (158) |
1289 (173) |
1304 (188) |
1318 (202) |
1331 (215) |
1344 (228) |
1357 (241) |