3325edo
Jump to navigation
Jump to search
Prime factorization
52 × 7 × 19
Step size
0.360902¢
Fifth
1945\3325 (701.955¢) (→389\665)
Semitones (A1:m2)
315:250 (113.7¢ : 90.23¢)
Consistency limit
9
Distinct consistency limit
9
← 3324edo | 3325edo | 3326edo → |
3325 equal divisions of the octave (abbreviated 3325edo or 3325ed2), also called 3325-tone equal temperament (3325tet) or 3325 equal temperament (3325et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 3325 equal parts of about 0.361 ¢ each. Each step represents a frequency ratio of 21/3325, or the 3325th root of 2.
3325edo is consistent up to the 9-odd-limit.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | -0.000 | -0.148 | -0.164 | +0.141 | +0.014 | +0.067 | -0.130 | +0.056 | +0.077 | +0.107 |
Relative (%) | +0.0 | -0.0 | -41.1 | -45.5 | +39.0 | +3.8 | +18.6 | -35.9 | +15.6 | +21.3 | +29.7 | |
Steps (reduced) |
3325 (0) |
5270 (1945) |
7720 (1070) |
9334 (2684) |
11503 (1528) |
12304 (2329) |
13591 (291) |
14124 (824) |
15041 (1741) |
16153 (2853) |
16473 (3173) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |