32ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 31ed7/432ed7/433ed7/4 →
Prime factorization 25
Step size 30.2758¢ 
Octave 40\32ed7/4 (1211.03¢) (→5\4ed7/4)
Twelfth 63\32ed7/4 (1907.38¢)
Consistency limit 3
Distinct consistency limit 3

32 equal divisions of 7/4 (abbreviated 32ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 32 equal parts of about 30.3 ¢ each. Each step represents a frequency ratio of (7/4)1/32, or the 32nd root of 7/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 30.276
2 60.552 27/26, 28/27
3 90.827
4 121.103 14/13, 15/14
5 151.379 23/21, 25/23
6 181.655 10/9, 21/19
7 211.931 17/15
8 242.206 15/13
9 272.482
10 302.758 25/21
11 333.034 17/14, 23/19
12 363.31 21/17, 27/22
13 393.586
14 423.861 14/11
15 454.137 13/10, 22/17
16 484.413 25/19
17 514.689 23/17, 27/20
18 544.965 15/11
19 575.24 7/5
20 605.516
21 635.792 13/9
22 666.068 22/15, 25/17
23 696.344 3/2
24 726.619
25 756.895 14/9, 17/11
26 787.171 11/7
27 817.447
28 847.723
29 877.998 5/3
30 908.274 22/13
31 938.55 19/11
32 968.826

Harmonics

Approximation of harmonics in 32ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +11.0 +5.4 -8.2 -0.9 -13.8 -8.2 +2.8 +10.8 +10.1 -3.5 -2.8
Relative (%) +36.4 +17.9 -27.1 -3.1 -45.7 -27.1 +9.3 +35.8 +33.3 -11.7 -9.2
Steps
(reduced)
40
(8)
63
(31)
79
(15)
92
(28)
102
(6)
111
(15)
119
(23)
126
(30)
132
(4)
137
(9)
142
(14)
Approximation of harmonics in 32ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +10.0 +2.8 +4.5 +13.9 -0.3 -8.4 -11.2 -9.2 -2.8 +7.5 -8.9
Relative (%) +33.1 +9.3 +14.8 +45.8 -0.9 -27.7 -36.9 -30.2 -9.2 +24.8 -29.4
Steps
(reduced)
147
(19)
151
(23)
155
(27)
159
(31)
162
(2)
165
(5)
168
(8)
171
(11)
174
(14)
177
(17)
179
(19)