32768edo
Jump to navigation
Jump to search
Prime factorization
215
Step size
0.0366211¢
Fifth
19168\32768 (701.953¢) (→599\1024)
Semitones (A1:m2)
3104:2464 (113.7¢ : 90.23¢)
Consistency limit
9
Distinct consistency limit
9
← 32767edo | 32768edo | 32769edo → |
32768 equal divisions of the octave (32768edo), or 32768-tone equal temperament (32768tet), 32768 equal temperament (32768et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 32768 equal parts of about 0.0366 ¢ each.
Theory
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.0000 | -0.0019 | +0.0022 | -0.0149 | +0.0126 | -0.0003 | +0.0006 | -0.0033 | -0.0029 | -0.0118 | -0.0038 |
relative (%) | +0 | -5 | +6 | -41 | +34 | -1 | +2 | -9 | -8 | -32 | -10 | |
Steps (reduced) |
32768 (0) |
51936 (19168) |
76085 (10549) |
91991 (26455) |
113359 (15055) |
121256 (22952) |
133938 (2866) |
139196 (8124) |
148228 (17156) |
159186 (28114) |
162339 (31267) |
This is the 15th power of two EDO. It has a consistency limit of only 9.