31ed8

From Xenharmonic Wiki
Jump to navigation Jump to search
← 30ed8 31ed8 32ed8 →
Prime factorization 31 (prime)
Step size 116.129¢ 
Octave 10\31ed8 (1161.29¢)
Twelfth 16\31ed8 (1858.06¢)
Consistency limit 1
Distinct consistency limit 1

31 equal divisions of the 8th harmonic (abbreviated 31ed8) is a nonoctave tuning system that divides the interval of 8/1 into 31 equal parts of about 116⁠ ⁠¢ each. Each step represents a frequency ratio of 81/31, or the 31st root of 8. It is identical to every third step of 31edo.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 116.1 15/14
2 232.3
3 348.4
4 464.5 17/13
5 580.6 7/5
6 696.8 3/2
7 812.9
8 929
9 1045.2
10 1161.3
11 1277.4 21/10, 23/11
12 1393.5
13 1509.7
14 1625.8
15 1741.9
16 1858.1
17 1974.2 22/7
18 2090.3 10/3
19 2206.5 25/7
20 2322.6
21 2438.7
22 2554.8
23 2671 14/3
24 2787.1 5/1
25 2903.2
26 3019.4
27 3135.5
28 3251.6
29 3367.7 7/1
30 3483.9 15/2
31 3600

Harmonics

Approximation of harmonics in 31ed8
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -38.7 -43.9 +38.7 +0.8 +33.5 -1.1 +0.0 +28.3 -37.9 +29.3 -5.2
Relative (%) -33.3 -37.8 +33.3 +0.7 +28.9 -0.9 +0.0 +24.4 -32.7 +25.3 -4.5
Steps
(reduced)
10
(10)
16
(16)
21
(21)
24
(24)
27
(27)
29
(29)
31
(0)
33
(2)
34
(3)
36
(5)
37
(6)
Approximation of harmonics in 31ed8
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -27.6 -39.8 -43.1 -38.7 -27.5 -10.4 +12.2 +39.5 -45.0 -9.4 +29.8
Relative (%) -23.8 -34.3 -37.1 -33.3 -23.7 -8.9 +10.5 +34.0 -38.7 -8.1 +25.7
Steps
(reduced)
38
(7)
39
(8)
40
(9)
41
(10)
42
(11)
43
(12)
44
(13)
45
(14)
45
(14)
46
(15)
47
(16)

Music


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.