31ed5/2

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 30ed5/231ed5/232ed5/2 →
Prime factorization 31 (prime)
Step size 51.1714¢ 
Octave 23\31ed5/2 (1176.94¢)
Twelfth 37\31ed5/2 (1893.34¢)
(semiconvergent)
Consistency limit 3
Distinct consistency limit 3

31 equal divisions of 5/2 (abbreviated 31ed5/2) is a nonoctave tuning system that divides the interval of 5/2 into 31 equal parts of about 51.2 ¢ each. Each step represents a frequency ratio of (5/2)1/31, or the 31st root of 5/2.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 51.171
2 102.343
3 153.514 23/21
4 204.686 26/23
5 255.857
6 307.028 6/5
7 358.2 21/17, 27/22
8 409.371 14/11
9 460.543 17/13
10 511.714
11 562.886 25/18
12 614.057
13 665.228 19/13, 22/15
14 716.4
15 767.571 14/9
16 818.743
17 869.914
18 921.085
19 972.257
20 1023.428 9/5
21 1074.6 13/7
22 1125.771 21/11
23 1176.942
24 1228.114
25 1279.285 23/11, 25/12
26 1330.457
27 1381.628
28 1432.799
29 1483.971 26/11
30 1535.142 17/7
31 1586.314 5/2

Harmonics

Approximation of harmonics in 31ed5/2
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -23.1 -8.6 +5.1 -23.1 +19.5 +8.5 -18.0 -17.2 +5.1 -6.4 -3.6
Relative (%) -45.1 -16.8 +9.9 -45.1 +38.1 +16.6 -35.2 -33.7 +9.9 -12.6 -7.0
Steps
(reduced)
23
(23)
37
(6)
47
(16)
54
(23)
61
(30)
66
(4)
70
(8)
74
(12)
78
(16)
81
(19)
84
(22)
Approximation of harmonics in 31ed5/2
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +11.4 -14.6 +19.5 +10.1 +7.5 +10.9 +19.6 -18.0 -0.1 +21.7 -4.1
Relative (%) +22.2 -28.5 +38.1 +19.8 +14.7 +21.3 +38.4 -35.2 -0.2 +42.4 -8.0
Steps
(reduced)
87
(25)
89
(27)
92
(30)
94
(1)
96
(3)
98
(5)
100
(7)
101
(8)
103
(10)
105
(12)
106
(13)