# 30103edo

Jump to navigation
Jump to search
Prime factorization
30103 (prime)
Step size
0.0398631¢
Fifth
17609\30103 (701.95¢)
Semitones (A1:m2)
2851:2264 (113.6¢ : 90.25¢)
Consistency limit
11
Distinct consistency limit
11

← 30102edo | 30103edo | 30104edo → |

**30103 equal divisions of the octave** (**30103edo**), or **30103-tone equal temperament** (**30103tet**), **30103 equal temperament** (**30103et**) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 30103 equal parts of about 0.0399 ¢ each.

30103edo is consistent in the 11-odd-limit and is otherwise a strong 2.3.5.17 subgroup tuning.

### As an interval size measure

Since logarithm of 2 in base 10 is equal to 0.30102999..., one step of 30103edo comes exceptionally close to being one step of an otherwise perfectly decimal tuning system, 100000ed10, similar to heptameride being one step of 301edo and savart being one step of 1000ed10. It was named jot by Augustus de Morgan in 1864.

### Prime harmonics

Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|

Error | absolute (¢) | +0.0000 | -0.0050 | -0.0001 | +0.0078 | -0.0108 | -0.0134 | +0.0042 | -0.0144 | +0.0085 | +0.0079 | -0.0068 |

relative (%) | +0 | -13 | -0 | +19 | -27 | -34 | +11 | -36 | +21 | +20 | -17 | |

Steps (reduced) |
30103 (0) |
47712 (17609) |
69897 (9691) |
84510 (24304) |
104139 (13830) |
111394 (21085) |
123045 (2633) |
127875 (7463) |
136173 (15761) |
146240 (25828) |
149136 (28724) |