2819edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 2818edo 2819edo 2820edo →
Prime factorization 2819 (prime)
Step size 0.425683 ¢ 
Fifth 1649\2819 (701.951 ¢)
Semitones (A1:m2) 267:212 (113.7 ¢ : 90.24 ¢)
Consistency limit 7
Distinct consistency limit 7

2819 equal divisions of the octave (abbreviated 2819edo or 2819ed2), also called 2819-tone equal temperament (2819tet) or 2819 equal temperament (2819et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 2819 equal parts of about 0.426 ¢ each. Each step represents a frequency ratio of 21/2819, or the 2819th root of 2.

Theory

2819edo is consistent to the 7-odd-limit tempering out 645700815/645657712, [-18 21 -9 2 and [28 7 -12 -4. It is strong in the 2.3.7.11.19.23.31 subgroup, tempering out 247808/247779, 16929/16928, 214291/214272, 116964/116963, 531441/531392 and 4917561/4917248. Using the 2.3.7.11.23.31.41 subgroup, it tempers out 76384/76383.

Prime harmonics

Approximation of prime harmonics in 2819edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.004 +0.206 +0.028 -0.059 +0.196 +0.188 +0.039 +0.034 +0.150 +0.051
Relative (%) +0.0 -0.9 +48.5 +6.6 -13.8 +46.0 +44.2 +9.2 +7.9 +35.2 +12.1
Steps
(reduced)
2819
(0)
4468
(1649)
6546
(908)
7914
(2276)
9752
(1295)
10432
(1975)
11523
(247)
11975
(699)
12752
(1476)
13695
(2419)
13966
(2690)

Subsets and supersets

2819edo is the 410th prime edo. 5638edo, which doubles it, gives a good correction to the harmonic 5.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-4468 2819 [2819 4468]] +0.0012 0.0012 0.28