2667518edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 2667517edo2667518edo2667519edo →
Prime factorization 2 × 7 × 190537
Step size 0.000449856¢
Fifth 1560398\2667518 (701.955¢) (→111457\190537)
Semitones (A1:m2) 252714:200564 (113.7¢ : 90.22¢)
Consistency limit 11
Distinct consistency limit 11

2667518 equal divisions of the octave (2667518edo), or 2667518-tone equal temperament (2667518tet), 2667518 equal temperament (2667518et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 2667518 equal parts of about 0.00045 ¢ each.

Theory

This EDO seems to be at its best in the 2.3.5.11.19.23 subgroup.


Approximation of prime harmonics in 2667518edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.000000 +0.000000 +0.000005 +0.000096 -0.000051 +0.000200 +0.000133 -0.000047 +0.000026 +0.000113 +0.000075
relative (%) +0 +0 +1 +21 -11 +44 +30 -10 +6 +25 +17
Steps
(reduced)
2667518
(0)
4227916
(1560398)
6193785
(858749)
7488670
(2153634)
9228096
(1225542)
9870990
(1868436)
10903381
(233309)
11331423
(661351)
12066683
(1396611)
12958752
(2288680)
13215408
(2545336)