2667518edo
Jump to navigation
Jump to search
Prime factorization
2 × 7 × 190537
Step size
0.000449856¢
Fifth
1560398\2667518 (701.955¢) (→111457\190537)
Semitones (A1:m2)
252714:200564 (113.7¢ : 90.22¢)
Consistency limit
11
Distinct consistency limit
11
← 2667517edo | 2667518edo | 2667519edo → |
2667518 equal divisions of the octave (2667518edo), or 2667518-tone equal temperament (2667518tet), 2667518 equal temperament (2667518et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 2667518 equal parts of about 0.00045 ¢ each.
Theory
This EDO seems to be at its best in the 2.3.5.11.19.23 subgroup.
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.000000 | +0.000000 | +0.000005 | +0.000096 | -0.000051 | +0.000200 | +0.000133 | -0.000047 | +0.000026 | +0.000113 | +0.000075 |
relative (%) | +0 | +0 | +1 | +21 | -11 | +44 | +30 | -10 | +6 | +25 | +17 | |
Steps (reduced) |
2667518 (0) |
4227916 (1560398) |
6193785 (858749) |
7488670 (2153634) |
9228096 (1225542) |
9870990 (1868436) |
10903381 (233309) |
11331423 (661351) |
12066683 (1396611) |
12958752 (2288680) |
13215408 (2545336) |