2660edo
Jump to navigation
Jump to search
Prime factorization
22 × 5 × 7 × 19
Step size
0.451128¢
Fifth
1556\2660 (701.955¢) (→389\665)
Semitones (A1:m2)
252:200 (113.7¢ : 90.23¢)
Consistency limit
5
Distinct consistency limit
5
← 2659edo | 2660edo | 2661edo → |
2660 equal divisions of the octave (2660edo), or 2660-tone equal temperament (2660tet), 2660 equal temperament (2660et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 2660 equal parts of about 0.451 ¢ each.
Theory
Despite its size, this system is only consistent up to the 5-limit.
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.000 | -0.000 | -0.148 | +0.197 | -0.040 | -0.077 | +0.157 | -0.220 | +0.147 | -0.104 | -0.073 |
relative (%) | +0 | -0 | -33 | +44 | -9 | -17 | +35 | -49 | +33 | -23 | -16 | |
Steps (reduced) |
2660 (0) |
4216 (1556) |
6176 (856) |
7468 (2148) |
9202 (1222) |
9843 (1863) |
10873 (233) |
11299 (659) |
12033 (1393) |
12922 (2282) |
13178 (2538) |