250ed10

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 249ed10250ed10251ed10 →
Prime factorization 2 × 53
Step size 15.9453¢ 
Octave 75\250ed10 (1195.89¢) (→3\10ed10)
Twelfth 119\250ed10 (1897.49¢)
Consistency limit 3
Distinct consistency limit 3

250 equal divisions of the 10th harmonic (abbreviated 250ed10) is a nonoctave tuning system that divides the interval of 10/1 into 250 equal parts of about 15.9 ¢ each. Each step represents a frequency ratio of 101/250, or the 250th root of 10.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 15.945
2 31.891
3 47.836
4 63.781 28/27
5 79.726 22/21
6 95.672 37/35
7 111.617
8 127.562 14/13
9 143.507
10 159.453 34/31
11 175.398
12 191.343
13 207.288 62/55
14 223.234 58/51
15 239.179
16 255.124
17 271.069 76/65
18 287.015
19 302.96
20 318.905
21 334.85
22 350.796 49/40, 60/49
23 366.741 68/55
24 382.686
25 398.631
26 414.577 47/37
27 430.522
28 446.467
29 462.412
30 478.358
31 494.303
32 510.248 47/35, 51/38
33 526.193
34 542.139
35 558.084
36 574.029 39/28
37 589.974
38 605.92
39 621.865 63/44
40 637.81
41 653.755
42 669.701
43 685.646 55/37
44 701.591 3/2
45 717.536
46 733.482
47 749.427
48 765.372 14/9
49 781.317
50 797.263 65/41
51 813.208
52 829.153
53 845.099 44/27, 57/35
54 861.044 51/31, 74/45
55 876.989
56 892.934 62/37
57 908.88
58 924.825 29/17
59 940.77
60 956.715
61 972.661
62 988.606
63 1004.551
64 1020.496
65 1036.442
66 1052.387
67 1068.332 76/41
68 1084.277 58/31
69 1100.223
70 1116.168 40/21
71 1132.113
72 1148.058
73 1164.004
74 1179.949
75 1195.894
76 1211.839
77 1227.785
78 1243.73 80/39
79 1259.675
80 1275.62
81 1291.566
82 1307.511
83 1323.456
84 1339.401 13/6
85 1355.347
86 1371.292
87 1387.237
88 1403.182 9/4
89 1419.128
90 1435.073
91 1451.018
92 1466.963 7/3
93 1482.909
94 1498.854
95 1514.799
96 1530.744
97 1546.69 22/9
98 1562.635 37/15
99 1578.58
100 1594.525
101 1610.471
102 1626.416
103 1642.361
104 1658.307
105 1674.252
106 1690.197 69/26
107 1706.142
108 1722.088
109 1738.033
110 1753.978
111 1769.923
112 1785.869
113 1801.814
114 1817.759 20/7
115 1833.704
116 1849.65
117 1865.595
118 1881.54
119 1897.485
120 1913.431
121 1929.376
122 1945.321 40/13
123 1961.266
124 1977.212 47/15
125 1993.157
126 2009.102
127 2025.047
128 2040.993 13/4
129 2056.938
130 2072.883
131 2088.828
132 2104.774
133 2120.719
134 2136.664
135 2152.609
136 2168.555 7/2
137 2184.5
138 2200.445 82/23
139 2216.39
140 2232.336
141 2248.281
142 2264.226 37/10
143 2280.171
144 2296.117
145 2312.062
146 2328.007
147 2343.952
148 2359.898 43/11
149 2375.843
150 2391.788
151 2407.733
152 2423.679
153 2439.624 45/11
154 2455.569
155 2471.515
156 2487.46
157 2503.405
158 2519.35 30/7
159 2535.296
160 2551.241
161 2567.186
162 2583.131 40/9
163 2599.077
164 2615.022
165 2630.967
166 2646.912 60/13
167 2662.858
168 2678.803 47/10
169 2694.748
170 2710.693
171 2726.639
172 2742.584 39/8
173 2758.529
174 2774.474
175 2790.42
176 2806.365
177 2822.31
178 2838.255
179 2854.201
180 2870.146 21/4
181 2886.091
182 2902.036
183 2917.982
184 2933.927 49/9
185 2949.872
186 2965.817
187 2981.763
188 2997.708
189 3013.653 57/10
190 3029.598
191 3045.544
192 3061.489
193 3077.434
194 3093.379
195 3109.325
196 3125.27
197 3141.215
198 3157.16
199 3173.106
200 3189.051 82/13
201 3204.996
202 3220.941 45/7
203 3236.887
204 3252.832
205 3268.777
206 3284.723 20/3
207 3300.668 74/11
208 3316.613
209 3332.558
210 3348.504
211 3364.449
212 3380.394
213 3396.339
214 3412.285
215 3428.23
216 3444.175
217 3460.12
218 3476.066
219 3492.011
220 3507.956
221 3523.901
222 3539.847
223 3555.792
224 3571.737
225 3587.682
226 3603.628
227 3619.573
228 3635.518 49/6
229 3651.463
230 3667.409
231 3683.354
232 3699.299
233 3715.244
234 3731.19
235 3747.135
236 3763.08
237 3779.025
238 3794.971
239 3810.916
240 3826.861
241 3842.806
242 3858.752 65/7
243 3874.697
244 3890.642
245 3906.587
246 3922.533
247 3938.478
248 3954.423
249 3970.368
250 3986.314 10/1

Harmonics

Approximation of harmonics in 250ed10
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.11 -4.47 +7.73 +4.11 +7.37 -4.38 +3.63 +7.01 +0.00 -5.55 +3.26
Relative (%) -25.7 -28.0 +48.5 +25.7 +46.2 -27.5 +22.8 +43.9 +0.0 -34.8 +20.5
Steps
(reduced)
75
(75)
119
(119)
151
(151)
175
(175)
195
(195)
211
(211)
226
(226)
239
(239)
250
(0)
260
(10)
270
(20)
Approximation of harmonics in 250ed10
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -7.75 +7.46 -0.36 -0.48 +6.18 +2.90 +4.97 -4.11 +7.10 +6.29 -6.89
Relative (%) -48.6 +46.8 -2.3 -3.0 +38.8 +18.2 +31.2 -25.7 +44.5 +39.4 -43.2
Steps
(reduced)
278
(28)
287
(37)
294
(44)
301
(51)
308
(58)
314
(64)
320
(70)
325
(75)
331
(81)
336
(86)
340
(90)