240edt
Jump to navigation
Jump to search
Prime factorization
24 × 3 × 5
Step size
7.92481¢
Octave
151\240edt (1196.65¢)
Consistency limit
2
Distinct consistency limit
2
Special properties
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 239edt | 240edt | 241edt → |
240 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 240edt or 240ed3), is a nonoctave tuning system that divides the interval of 3/1 into 240 equal parts of about 7.92 ¢ each. Each step represents a frequency ratio of 31/240, or the 240th root of 3.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.35 | +0.00 | +1.22 | +3.22 | -3.35 | -0.78 | -2.14 | +0.00 | -0.13 | +1.28 | +1.22 |
Relative (%) | -42.3 | +0.0 | +15.4 | +40.6 | -42.3 | -9.8 | -26.9 | +0.0 | -1.7 | +16.2 | +15.4 | |
Steps (reduced) |
151 (151) |
240 (0) |
303 (63) |
352 (112) |
391 (151) |
425 (185) |
454 (214) |
480 (0) |
503 (23) |
524 (44) |
543 (63) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +3.79 | +3.22 | +2.44 | +0.50 | -3.35 | -1.86 | -3.49 | -0.78 | -2.07 | +0.22 |
Relative (%) | -33.2 | +47.8 | +40.6 | +30.7 | +6.4 | -42.3 | -23.5 | -44.0 | -9.8 | -26.1 | +2.8 | |
Steps (reduced) |
560 (80) |
577 (97) |
592 (112) |
606 (126) |
619 (139) |
631 (151) |
643 (163) |
654 (174) |
665 (185) |
675 (195) |
685 (205) |