228edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 227edt 228edt 229edt →
Prime factorization 22 × 3 × 19
Step size 8.34191¢ 
Octave 144\228edt (1201.23¢) (→12\19edt)
Consistency limit 11
Distinct consistency limit 11

228 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 228edt or 228ed3), is a nonoctave tuning system that divides the interval of 3/1 into 228 equal parts of about 8.34 ¢ each. Each step represents a frequency ratio of 31/228, or the 228th root of 3.

Harmonics

Approximation of harmonics in 228edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.23 +0.00 +2.47 -0.12 +1.23 +1.30 +3.70 +0.00 +1.12 +2.95 +2.47
Relative (%) +14.8 +0.0 +29.6 -1.4 +14.8 +15.6 +44.4 +0.0 +13.4 +35.4 +29.6
Steps
(reduced)
144
(144)
228
(0)
288
(60)
334
(106)
372
(144)
404
(176)
432
(204)
456
(0)
478
(22)
498
(42)
516
(60)
Approximation of harmonics in 228edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 +2.54 -0.12 -3.40 +0.09 +1.23 -0.61 +2.35 +1.30 -4.15 +2.31
Relative (%) -31.6 +30.4 -1.4 -40.8 +1.0 +14.8 -7.3 +28.2 +15.6 -49.8 +27.7
Steps
(reduced)
532
(76)
548
(92)
562
(106)
575
(119)
588
(132)
600
(144)
611
(155)
622
(166)
632
(176)
641
(185)
651
(195)