216edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 215edt 216edt 217edt →
Prime factorization 23 × 33
Step size 8.80535¢ 
Octave 136\216edt (1197.53¢) (→17\27edt)
Consistency limit 2
Distinct consistency limit 2

216 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 216edt or 216ed3), is a nonoctave tuning system that divides the interval of 3/1 into 216 equal parts of about 8.81 ¢ each. Each step represents a frequency ratio of 31/216, or the 216th root of 3.

Harmonics

Approximation of harmonics in 216edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.47 +0.00 +3.86 -3.82 -2.47 +3.62 +1.39 +0.00 +2.51 -4.00 +3.86
Relative (%) -28.1 +0.0 +43.8 -43.4 -28.1 +41.1 +15.8 +0.0 +28.5 -45.4 +43.8
Steps
(reduced)
136
(136)
216
(0)
273
(57)
316
(100)
352
(136)
383
(167)
409
(193)
432
(0)
453
(21)
471
(39)
489
(57)
Approximation of harmonics in 216edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 +1.15 -3.82 -1.09 -0.38 -2.47 +0.78 +0.04 +3.62 +2.33 -4.18
Relative (%) -29.9 +13.1 -43.4 -12.3 -4.3 -28.1 +8.9 +0.4 +41.1 +26.5 -47.5
Steps
(reduced)
504
(72)
519
(87)
532
(100)
545
(113)
557
(125)
568
(136)
579
(147)
589
(157)
599
(167)
608
(176)
616
(184)