1ed26/25
Jump to navigation
Jump to search
Prime factorization
n/a
Step size
67.9002¢
Octave
18\1ed26/25 (1222.2¢)
Twelfth
28\1ed26/25 (1901.21¢)
Consistency limit
3
Distinct consistency limit
1
Special properties
← 0ed26/25 | 1ed26/25 | 2ed26/25 → |
1 equal division of 26/25 (1ed26/25), also known as ambitonal sequence of 26/25 (AS26/25) or 26/25 equal-step tuning, is the scale of integer multiples of the 26/25 third tone, and corresponds to 18edo with the octave stretched by 22.2 cents, or almost exactly to 28edt.
Harmonics
1ed26/25 offers an okay approximation of the no-31s 71-limit. Alternatively, it can be seen as a high accuracy no-2s, no-7s, no-13s 29-limit tuning.
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +22.2 | -0.7 | -2.4 | +26.2 | -9.4 | -27.0 | -16.1 | -5.0 | +3.7 | +9.8 | +30.2 |
Relative (%) | +32.7 | -1.1 | -3.5 | +38.6 | -13.8 | -39.8 | -23.8 | -7.4 | +5.5 | +14.5 | +44.5 | |
Step | 18 | 28 | 41 | 50 | 61 | 65 | 72 | 75 | 80 | 86 | 88 |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.5 | +21.5 | +6.9 | -11.3 | -15.6 | +2.5 | +12.6 | -14.0 | +21.4 | -26.7 | -27.6 |
Relative (%) | -6.7 | +31.6 | +10.2 | -16.6 | -22.9 | +3.6 | +18.6 | -20.6 | +31.6 | -39.3 | -40.7 | |
Step | 92 | 95 | 96 | 98 | 101 | 104 | 105 | 107 | 109 | 109 | 111 |
18edo for comparsion
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +31.4 | +13.7 | +31.2 | -18.0 | +26.1 | +28.4 | -30.8 | -28.3 | -29.6 | -11.7 |
Relative (%) | +0.0 | +47.1 | +20.5 | +46.8 | -27.0 | +39.2 | +42.6 | -46.3 | -42.4 | -44.4 | -17.6 | |
Steps (reduced) |
18 (0) |
29 (11) |
42 (6) |
51 (15) |
62 (8) |
67 (13) |
74 (2) |
76 (4) |
81 (9) |
87 (15) |
89 (17) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +15.3 | -29.1 | +21.8 | +1.2 | -6.8 | +7.5 | +16.4 | -12.6 | +20.3 | -27.8 | -31.2 |
Relative (%) | +23.0 | -43.6 | +32.7 | +1.7 | -10.3 | +11.2 | +24.7 | -19.0 | +30.5 | -41.7 | -46.8 | |
Steps (reduced) |
94 (4) |
96 (6) |
98 (8) |
100 (10) |
103 (13) |
106 (16) |
107 (17) |
109 (1) |
111 (3) |
111 (3) |
113 (5) |
28edt for comparsion
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +22.7 | +0.0 | -1.3 | +27.5 | -7.8 | -25.3 | -14.2 | -3.0 | +5.9 | +12.1 | +32.5 |
Relative (%) | +33.4 | +0.0 | -1.9 | +40.5 | -11.4 | -37.2 | -20.9 | -4.4 | +8.7 | +17.9 | +47.9 | |
Steps (reduced) |
18 (18) |
28 (0) |
41 (13) |
50 (22) |
61 (5) |
65 (9) |
72 (16) |
75 (19) |
80 (24) |
86 (2) |
88 (4) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.1 | +24.0 | +9.5 | -8.7 | -12.9 | +5.2 | +15.4 | -11.1 | +24.3 | -23.8 | -24.6 |
Relative (%) | -3.0 | +35.3 | +13.9 | -12.8 | -19.0 | +7.7 | +22.7 | -16.4 | +35.8 | -35.0 | -36.3 | |
Steps (reduced) |
92 (8) |
95 (11) |
96 (12) |
98 (14) |
101 (17) |
104 (20) |
105 (21) |
107 (23) |
109 (25) |
109 (25) |
111 (27) |