1983edo
Jump to navigation
Jump to search
Prime factorization
3 × 661
Step size
0.605144¢
Fifth
1160\1983 (701.967¢)
Semitones (A1:m2)
188:149 (113.8¢ : 90.17¢)
Consistency limit
17
Distinct consistency limit
17
← 1982edo | 1983edo | 1984edo → |
1983 equal divisions of the octave (abbreviated 1983edo or 1983ed2), also called 1983-tone equal temperament (1983tet) or 1983 equal temperament (1983et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1983 equal parts of about 0.605 ¢ each. Each step represents a frequency ratio of 21/1983, or the 1983rd root of 2.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.012 | -0.232 | +0.009 | -0.032 | +0.017 | -0.266 | +0.218 | -0.135 | -0.228 | -0.104 |
Relative (%) | +0.0 | +1.9 | -38.3 | +1.5 | -5.3 | +2.8 | -43.9 | +36.0 | -22.3 | -37.6 | -17.1 | |
Steps (reduced) |
1983 (0) |
3143 (1160) |
4604 (638) |
5567 (1601) |
6860 (911) |
7338 (1389) |
8105 (173) |
8424 (492) |
8970 (1038) |
9633 (1701) |
9824 (1892) |