1983edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1982edo 1983edo 1984edo →
Prime factorization 3 × 661
Step size 0.605144¢ 
Fifth 1160\1983 (701.967¢)
Semitones (A1:m2) 188:149 (113.8¢ : 90.17¢)
Consistency limit 17
Distinct consistency limit 17

1983 equal divisions of the octave (abbreviated 1983edo or 1983ed2), also called 1983-tone equal temperament (1983tet) or 1983 equal temperament (1983et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1983 equal parts of about 0.605 ¢ each. Each step represents a frequency ratio of 21/1983, or the 1983rd root of 2.

Harmonics

Approximation of prime harmonics in 1983edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.012 -0.232 +0.009 -0.032 +0.017 -0.266 +0.218 -0.135 -0.228 -0.104
Relative (%) +0.0 +1.9 -38.3 +1.5 -5.3 +2.8 -43.9 +36.0 -22.3 -37.6 -17.1
Steps
(reduced)
1983
(0)
3143
(1160)
4604
(638)
5567
(1601)
6860
(911)
7338
(1389)
8105
(173)
8424
(492)
8970
(1038)
9633
(1701)
9824
(1892)


Icon-Todo.png Todo: explain its xenharmonic value