17461edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 17460edo 17461edo 17462edo →
Prime factorization 19 × 919
Step size 0.0687246¢ 
Fifth 10214\17461 (701.953¢)
Semitones (A1:m2) 1654:1313 (113.7¢ : 90.24¢)
Consistency limit 45
Distinct consistency limit 45

17461 equal divisions of the octave (abbreviated 17461edo or 17461ed2), also called 17461-tone equal temperament (17461tet) or 17461 equal temperament (17461et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 17461 equal parts of about 0.0687 ¢ each. Each step represents a frequency ratio of 21/17461, or the 17461st root of 2.

17461edo is a remarkable very high-limit system, distinctly consistent through the 45-odd-limit, and has a lower relative error than any previous equal temperaments in the 41-limit. It tempers out 33670/33669, 67425/67424, 81549/81548, 101270/101269, 115885/115884, 120745/120744, 127281/127280, 203320/203319, 355725/355718, 728365/728364, 730639/730620, 2942775/2942758, and 7172253/7172228 in the 43-limit.

Prime harmonics

Approximation of prime harmonics in 17461edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Error Absolute (¢) +0.0000 -0.0021 -0.0128 -0.0154 -0.0093 -0.0260 -0.0130 -0.0043 +0.0058 -0.0142 -0.0152 -0.0182 -0.0148 -0.0006 +0.0223
Relative (%) +0.0 -3.0 -18.6 -22.4 -13.5 -37.8 -18.9 -6.2 +8.5 -20.6 -22.2 -26.5 -21.6 -0.9 +32.4
Steps
(reduced)
17461
(0)
27675
(10214)
40543
(5621)
49019
(14097)
60405
(8022)
64613
(12230)
71371
(1527)
74173
(4329)
78986
(9142)
84825
(14981)
86505
(16661)
90962
(3657)
93548
(6243)
94748
(7443)
96989
(9684)