1714833edo
![]() |
This page presents a niche topic.
While not arbitrary, it may contain ideas whose practical applications in music are unknown or narrow in scope. Niche topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks. |
← 1714832edo | 1714833edo | 1714834edo → |
1714833 equal divisions of the octave (abbreviated 1714833edo or 1714833ed2), also called 1714833-tone equal temperament (1714833tet) or 1714833 equal temperament (1714833et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1714833 equal parts of about 0.0007 ¢ each. Each step represents a frequency ratio of 21/1714833, or the 1714833rd root of 2.
Theory
This EDO inherits its fifth from 190537edo and seems to be at its best in the 2.3.5.7.13.17.29 subgroup.
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000055 | +0.000096 | +0.000349 | -0.000100 | -0.000116 | -0.000197 | -0.000224 | -0.000087 | -0.000225 |
Relative (%) | +0.0 | +0.0 | +7.9 | +13.7 | +49.9 | -14.3 | -16.6 | -28.2 | -32.0 | -12.4 | -32.2 | |
Steps (reduced) |
1714833 (0) |
2717946 (1003113) |
3981719 (552053) |
4814145 (1384479) |
5932348 (787849) |
6345636 (1201137) |
7009316 (149984) |
7284486 (425154) |
7757153 (897821) |
8330626 (1471294) |
8495619 (1636287) |