1714833edo
Jump to navigation
Jump to search
Prime factorization
32 × 190537
Step size
0.000699777¢
Fifth
1003113\1714833 (701.955¢) (→111457\190537)
Semitones (A1:m2)
162459:128934 (113.7¢ : 90.22¢)
Consistency limit
11
Distinct consistency limit
11
← 1714832edo | 1714833edo | 1714834edo → |
1714833 equal divisions of the octave (1714833edo), or 1714833-tone equal temperament (1714833tet), 1714833 equal temperament (1714833et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 1714833 equal parts of about 0.0007 ¢ each.
Theory
This EDO seems to be at its best in the 2.3.5.7.13.17.29 subgroup.
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.000000 | +0.000000 | +0.000055 | +0.000096 | +0.000349 | -0.000100 | -0.000116 | -0.000197 | -0.000224 | -0.000087 | -0.000225 |
relative (%) | +0 | +0 | +8 | +14 | +50 | -14 | -17 | -28 | -32 | -12 | -32 | |
Steps (reduced) |
1714833 (0) |
2717946 (1003113) |
3981719 (552053) |
4814145 (1384479) |
5932348 (787849) |
6345636 (1201137) |
7009316 (149984) |
7284486 (425154) |
7757153 (897821) |
8330626 (1471294) |
8495619 (1636287) |