170ed11
Jump to navigation
Jump to search
Prime factorization
2 × 5 × 17
Step size
24.4195¢
Octave
49\170ed11 (1196.56¢)
Twelfth
78\170ed11 (1904.72¢) (→39\85ed11)
Consistency limit
7
Distinct consistency limit
7
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 169ed11 | 170ed11 | 171ed11 → |
170 equal divisions of the 11th harmonic (abbreviated 170ed11) is a nonoctave tuning system that divides the interval of 11/1 into 170 equal parts of about 24.4 ¢ each. Each step represents a frequency ratio of 111/170, or the 170th root of 11.
170ed11 is like 49edo, but with 11/1 instead of 2/1 being just. It helps improve the qualities of harmonics 3, 5 and 7 at the expense of 2.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 24.42 | |
2 | 48.84 | 36/35 |
3 | 73.26 | 24/23, 49/47 |
4 | 97.68 | 18/17, 55/52 |
5 | 122.1 | 44/41 |
6 | 146.52 | 37/34, 49/45 |
7 | 170.94 | |
8 | 195.36 | 28/25, 47/42 |
9 | 219.78 | 42/37 |
10 | 244.2 | 38/33 |
11 | 268.61 | |
12 | 293.03 | 45/38, 58/49 |
13 | 317.45 | |
14 | 341.87 | 28/23 |
15 | 366.29 | 21/17 |
16 | 390.71 | |
17 | 415.13 | 47/37 |
18 | 439.55 | 49/38, 58/45 |
19 | 463.97 | 17/13 |
20 | 488.39 | 57/43 |
21 | 512.81 | 39/29 |
22 | 537.23 | 15/11 |
23 | 561.65 | 47/34 |
24 | 586.07 | |
25 | 610.49 | 37/26 |
26 | 634.91 | |
27 | 659.33 | 41/28, 60/41 |
28 | 683.75 | 46/31, 49/33 |
29 | 708.17 | |
30 | 732.59 | 29/19, 55/36 |
31 | 757.01 | 48/31 |
32 | 781.42 | 11/7 |
33 | 805.84 | 43/27 |
34 | 830.26 | 21/13 |
35 | 854.68 | |
36 | 879.1 | |
37 | 903.52 | |
38 | 927.94 | 41/24 |
39 | 952.36 | 26/15 |
40 | 976.78 | 51/29, 58/33 |
41 | 1001.2 | 41/23 |
42 | 1025.62 | 38/21, 47/26 |
43 | 1050.04 | 11/6 |
44 | 1074.46 | |
45 | 1098.88 | |
46 | 1123.3 | 44/23 |
47 | 1147.72 | 33/17 |
48 | 1172.14 | |
49 | 1196.56 | |
50 | 1220.98 | |
51 | 1245.4 | 39/19 |
52 | 1269.81 | 25/12 |
53 | 1294.23 | 19/9 |
54 | 1318.65 | 15/7 |
55 | 1343.07 | 50/23 |
56 | 1367.49 | |
57 | 1391.91 | 38/17 |
58 | 1416.33 | 34/15 |
59 | 1440.75 | 23/10 |
60 | 1465.17 | |
61 | 1489.59 | 26/11 |
62 | 1514.01 | |
63 | 1538.43 | |
64 | 1562.85 | 37/15 |
65 | 1587.27 | 5/2 |
66 | 1611.69 | 33/13 |
67 | 1636.11 | 18/7 |
68 | 1660.53 | 47/18, 60/23 |
69 | 1684.95 | 45/17 |
70 | 1709.37 | 51/19 |
71 | 1733.79 | 49/18 |
72 | 1758.21 | 58/21 |
73 | 1782.62 | 14/5 |
74 | 1807.04 | 54/19 |
75 | 1831.46 | 49/17 |
76 | 1855.88 | 38/13 |
77 | 1880.3 | |
78 | 1904.72 | |
79 | 1929.14 | |
80 | 1953.56 | 34/11 |
81 | 1977.98 | 47/15 |
82 | 2002.4 | |
83 | 2026.82 | 29/9 |
84 | 2051.24 | |
85 | 2075.66 | |
86 | 2100.08 | 37/11 |
87 | 2124.5 | 58/17 |
88 | 2148.92 | 45/13 |
89 | 2173.34 | |
90 | 2197.76 | |
91 | 2222.18 | |
92 | 2246.6 | |
93 | 2271.02 | 26/7 |
94 | 2295.43 | |
95 | 2319.85 | 42/11 |
96 | 2344.27 | 31/8 |
97 | 2368.69 | 55/14 |
98 | 2393.11 | |
99 | 2417.53 | |
100 | 2441.95 | 41/10 |
101 | 2466.37 | 54/13 |
102 | 2490.79 | |
103 | 2515.21 | 47/11 |
104 | 2539.63 | 13/3 |
105 | 2564.05 | 22/5 |
106 | 2588.47 | 58/13 |
107 | 2612.89 | |
108 | 2637.31 | |
109 | 2661.73 | |
110 | 2686.15 | |
111 | 2710.57 | |
112 | 2734.99 | 34/7 |
113 | 2759.41 | |
114 | 2783.82 | |
115 | 2808.24 | |
116 | 2832.66 | |
117 | 2857.08 | |
118 | 2881.5 | 37/7 |
119 | 2905.92 | |
120 | 2930.34 | |
121 | 2954.76 | |
122 | 2979.18 | |
123 | 3003.6 | 17/3 |
124 | 3028.02 | 23/4 |
125 | 3052.44 | 35/6 |
126 | 3076.86 | |
127 | 3101.28 | 6/1 |
128 | 3125.7 | |
129 | 3150.12 | 37/6 |
130 | 3174.54 | |
131 | 3198.96 | |
132 | 3223.38 | |
133 | 3247.8 | |
134 | 3272.22 | |
135 | 3296.63 | 47/7 |
136 | 3321.05 | |
137 | 3345.47 | |
138 | 3369.89 | 7/1 |
139 | 3394.31 | |
140 | 3418.73 | 36/5 |
141 | 3443.15 | |
142 | 3467.57 | |
143 | 3491.99 | |
144 | 3516.41 | |
145 | 3540.83 | |
146 | 3565.25 | |
147 | 3589.67 | |
148 | 3614.09 | |
149 | 3638.51 | |
150 | 3662.93 | |
151 | 3687.35 | |
152 | 3711.77 | |
153 | 3736.19 | |
154 | 3760.61 | |
155 | 3785.03 | |
156 | 3809.44 | |
157 | 3833.86 | |
158 | 3858.28 | |
159 | 3882.7 | |
160 | 3907.12 | |
161 | 3931.54 | |
162 | 3955.96 | |
163 | 3980.38 | |
164 | 4004.8 | |
165 | 4029.22 | 41/4 |
166 | 4053.64 | 52/5 |
167 | 4078.06 | |
168 | 4102.48 | |
169 | 4126.9 | |
170 | 4151.32 | 11/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.4 | +2.8 | -6.9 | -2.5 | -0.7 | +1.1 | -10.3 | +5.5 | -5.9 | +0.0 | -4.1 |
Relative (%) | -14.1 | +11.3 | -28.2 | -10.2 | -2.8 | +4.4 | -42.3 | +22.7 | -24.3 | +0.0 | -16.9 | |
Steps (reduced) |
49 (49) |
78 (78) |
98 (98) |
114 (114) |
127 (127) |
138 (138) |
147 (147) |
156 (156) |
163 (163) |
170 (0) |
176 (6) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.8 | -2.4 | +0.3 | +10.6 | +3.4 | +2.1 | +6.2 | -9.4 | +3.8 | -3.4 | -7.1 |
Relative (%) | +15.7 | -9.7 | +1.1 | +43.6 | +13.8 | +8.6 | +25.3 | -38.4 | +15.7 | -14.1 | -29.2 | |
Steps (reduced) |
182 (12) |
187 (17) |
192 (22) |
197 (27) |
201 (31) |
205 (35) |
209 (39) |
212 (42) |
216 (46) |
219 (49) |
222 (52) |