170ed11

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 169ed11170ed11171ed11 →
Prime factorization 2 × 5 × 17
Step size 24.4195¢ 
Octave 49\170ed11 (1196.56¢)
Twelfth 78\170ed11 (1904.72¢) (→39\85ed11)
Consistency limit 7
Distinct consistency limit 7

170 equal divisions of the 11th harmonic (abbreviated 170ed11) is a nonoctave tuning system that divides the interval of 11/1 into 170 equal parts of about 24.4 ¢ each. Each step represents a frequency ratio of 111/170, or the 170th root of 11.

170ed11 is like 49edo, but with 11/1 instead of 2/1 being just. It helps improve the qualities of harmonics 3, 5 and 7 at the expense of 2.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 24.42
2 48.839 36/35
3 73.259 24/23, 49/47
4 97.678 18/17, 55/52
5 122.098 44/41
6 146.517 37/34, 49/45
7 170.937
8 195.356 28/25, 47/42
9 219.776 42/37
10 244.195 38/33
11 268.615
12 293.034 45/38, 58/49
13 317.454
14 341.873 28/23
15 366.293 21/17
16 390.712
17 415.132 47/37
18 439.551 49/38, 58/45
19 463.971 17/13
20 488.39 57/43
21 512.81 39/29
22 537.229 15/11
23 561.649 47/34
24 586.068
25 610.488 37/26
26 634.907
27 659.327 41/28, 60/41
28 683.746 46/31, 49/33
29 708.166
30 732.586 29/19, 55/36
31 757.005 48/31
32 781.425 11/7
33 805.844 43/27
34 830.264 21/13
35 854.683
36 879.103
37 903.522
38 927.942 41/24
39 952.361 26/15
40 976.781 51/29, 58/33
41 1001.2 41/23
42 1025.62 38/21, 47/26
43 1050.039 11/6
44 1074.459
45 1098.878
46 1123.298 44/23
47 1147.717 33/17
48 1172.137
49 1196.556
50 1220.976
51 1245.395 39/19
52 1269.815 25/12
53 1294.234 19/9
54 1318.654 15/7
55 1343.073 50/23
56 1367.493
57 1391.912 38/17
58 1416.332 34/15
59 1440.752 23/10
60 1465.171
61 1489.591 26/11
62 1514.01
63 1538.43
64 1562.849 37/15
65 1587.269 5/2
66 1611.688 33/13
67 1636.108 18/7
68 1660.527 47/18, 60/23
69 1684.947 45/17
70 1709.366 51/19
71 1733.786 49/18
72 1758.205 58/21
73 1782.625 14/5
74 1807.044 54/19
75 1831.464 49/17
76 1855.883 38/13
77 1880.303
78 1904.722
79 1929.142
80 1953.561 34/11
81 1977.981 47/15
82 2002.4
83 2026.82 29/9
84 2051.239
85 2075.659
86 2100.078 37/11
87 2124.498 58/17
88 2148.918 45/13
89 2173.337
90 2197.757
91 2222.176
92 2246.596
93 2271.015 26/7
94 2295.435
95 2319.854 42/11
96 2344.274 31/8
97 2368.693 55/14
98 2393.113
99 2417.532
100 2441.952 41/10
101 2466.371 54/13
102 2490.791
103 2515.21 47/11
104 2539.63 13/3
105 2564.049 22/5
106 2588.469 58/13
107 2612.888
108 2637.308
109 2661.727
110 2686.147
111 2710.566
112 2734.986 34/7
113 2759.405
114 2783.825
115 2808.244
116 2832.664
117 2857.084
118 2881.503 37/7
119 2905.923
120 2930.342
121 2954.762
122 2979.181
123 3003.601 17/3
124 3028.02 23/4
125 3052.44 35/6
126 3076.859
127 3101.279 6/1
128 3125.698
129 3150.118 37/6
130 3174.537
131 3198.957
132 3223.376
133 3247.796
134 3272.215
135 3296.635 47/7
136 3321.054
137 3345.474
138 3369.893 7/1
139 3394.313
140 3418.732 36/5
141 3443.152
142 3467.571
143 3491.991
144 3516.41
145 3540.83
146 3565.25
147 3589.669
148 3614.089
149 3638.508
150 3662.928
151 3687.347
152 3711.767
153 3736.186
154 3760.606
155 3785.025
156 3809.445
157 3833.864
158 3858.284
159 3882.703
160 3907.123
161 3931.542
162 3955.962
163 3980.381
164 4004.801
165 4029.22 41/4
166 4053.64 52/5
167 4078.059
168 4102.479
169 4126.898
170 4151.318 11/1

Harmonics

Approximation of harmonics in 170ed11
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -3.4 +2.8 -6.9 -2.5 -0.7 +1.1 -10.3 +5.5 -5.9 +0.0 -4.1
Relative (%) -14.1 +11.3 -28.2 -10.2 -2.8 +4.4 -42.3 +22.7 -24.3 +0.0 -16.9
Steps
(reduced)
49
(49)
78
(78)
98
(98)
114
(114)
127
(127)
138
(138)
147
(147)
156
(156)
163
(163)
170
(0)
176
(6)
Approximation of harmonics in 170ed11
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +3.8 -2.4 +0.3 +10.6 +3.4 +2.1 +6.2 -9.4 +3.8 -3.4 -7.1
Relative (%) +15.7 -9.7 +1.1 +43.6 +13.8 +8.6 +25.3 -38.4 +15.7 -14.1 -29.2
Steps
(reduced)
182
(12)
187
(17)
192
(22)
197
(27)
201
(31)
205
(35)
209
(39)
212
(42)
216
(46)
219
(49)
222
(52)