170ed11
Jump to navigation
Jump to search
Prime factorization
2 × 5 × 17
Step size
24.4195¢
Octave
49\170ed11 (1196.56¢)
Twelfth
78\170ed11 (1904.72¢) (→39\85ed11)
Consistency limit
7
Distinct consistency limit
7
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 169ed11 | 170ed11 | 171ed11 → |
170 equal divisions of the 11th harmonic (abbreviated 170ed11) is a nonoctave tuning system that divides the interval of 11/1 into 170 equal parts of about 24.4 ¢ each. Each step represents a frequency ratio of 111/170, or the 170th root of 11.
170ed11 is like 49edo, but with 11/1 instead of 2/1 being just. It helps improve the qualities of harmonics 3, 5 and 7 at the expense of 2.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 24.42 | |
2 | 48.839 | 36/35 |
3 | 73.259 | 24/23, 49/47 |
4 | 97.678 | 18/17, 55/52 |
5 | 122.098 | 44/41 |
6 | 146.517 | 37/34, 49/45 |
7 | 170.937 | |
8 | 195.356 | 28/25, 47/42 |
9 | 219.776 | 42/37 |
10 | 244.195 | 38/33 |
11 | 268.615 | |
12 | 293.034 | 45/38, 58/49 |
13 | 317.454 | |
14 | 341.873 | 28/23 |
15 | 366.293 | 21/17 |
16 | 390.712 | |
17 | 415.132 | 47/37 |
18 | 439.551 | 49/38, 58/45 |
19 | 463.971 | 17/13 |
20 | 488.39 | 57/43 |
21 | 512.81 | 39/29 |
22 | 537.229 | 15/11 |
23 | 561.649 | 47/34 |
24 | 586.068 | |
25 | 610.488 | 37/26 |
26 | 634.907 | |
27 | 659.327 | 41/28, 60/41 |
28 | 683.746 | 46/31, 49/33 |
29 | 708.166 | |
30 | 732.586 | 29/19, 55/36 |
31 | 757.005 | 48/31 |
32 | 781.425 | 11/7 |
33 | 805.844 | 43/27 |
34 | 830.264 | 21/13 |
35 | 854.683 | |
36 | 879.103 | |
37 | 903.522 | |
38 | 927.942 | 41/24 |
39 | 952.361 | 26/15 |
40 | 976.781 | 51/29, 58/33 |
41 | 1001.2 | 41/23 |
42 | 1025.62 | 38/21, 47/26 |
43 | 1050.039 | 11/6 |
44 | 1074.459 | |
45 | 1098.878 | |
46 | 1123.298 | 44/23 |
47 | 1147.717 | 33/17 |
48 | 1172.137 | |
49 | 1196.556 | |
50 | 1220.976 | |
51 | 1245.395 | 39/19 |
52 | 1269.815 | 25/12 |
53 | 1294.234 | 19/9 |
54 | 1318.654 | 15/7 |
55 | 1343.073 | 50/23 |
56 | 1367.493 | |
57 | 1391.912 | 38/17 |
58 | 1416.332 | 34/15 |
59 | 1440.752 | 23/10 |
60 | 1465.171 | |
61 | 1489.591 | 26/11 |
62 | 1514.01 | |
63 | 1538.43 | |
64 | 1562.849 | 37/15 |
65 | 1587.269 | 5/2 |
66 | 1611.688 | 33/13 |
67 | 1636.108 | 18/7 |
68 | 1660.527 | 47/18, 60/23 |
69 | 1684.947 | 45/17 |
70 | 1709.366 | 51/19 |
71 | 1733.786 | 49/18 |
72 | 1758.205 | 58/21 |
73 | 1782.625 | 14/5 |
74 | 1807.044 | 54/19 |
75 | 1831.464 | 49/17 |
76 | 1855.883 | 38/13 |
77 | 1880.303 | |
78 | 1904.722 | |
79 | 1929.142 | |
80 | 1953.561 | 34/11 |
81 | 1977.981 | 47/15 |
82 | 2002.4 | |
83 | 2026.82 | 29/9 |
84 | 2051.239 | |
85 | 2075.659 | |
86 | 2100.078 | 37/11 |
87 | 2124.498 | 58/17 |
88 | 2148.918 | 45/13 |
89 | 2173.337 | |
90 | 2197.757 | |
91 | 2222.176 | |
92 | 2246.596 | |
93 | 2271.015 | 26/7 |
94 | 2295.435 | |
95 | 2319.854 | 42/11 |
96 | 2344.274 | 31/8 |
97 | 2368.693 | 55/14 |
98 | 2393.113 | |
99 | 2417.532 | |
100 | 2441.952 | 41/10 |
101 | 2466.371 | 54/13 |
102 | 2490.791 | |
103 | 2515.21 | 47/11 |
104 | 2539.63 | 13/3 |
105 | 2564.049 | 22/5 |
106 | 2588.469 | 58/13 |
107 | 2612.888 | |
108 | 2637.308 | |
109 | 2661.727 | |
110 | 2686.147 | |
111 | 2710.566 | |
112 | 2734.986 | 34/7 |
113 | 2759.405 | |
114 | 2783.825 | |
115 | 2808.244 | |
116 | 2832.664 | |
117 | 2857.084 | |
118 | 2881.503 | 37/7 |
119 | 2905.923 | |
120 | 2930.342 | |
121 | 2954.762 | |
122 | 2979.181 | |
123 | 3003.601 | 17/3 |
124 | 3028.02 | 23/4 |
125 | 3052.44 | 35/6 |
126 | 3076.859 | |
127 | 3101.279 | 6/1 |
128 | 3125.698 | |
129 | 3150.118 | 37/6 |
130 | 3174.537 | |
131 | 3198.957 | |
132 | 3223.376 | |
133 | 3247.796 | |
134 | 3272.215 | |
135 | 3296.635 | 47/7 |
136 | 3321.054 | |
137 | 3345.474 | |
138 | 3369.893 | 7/1 |
139 | 3394.313 | |
140 | 3418.732 | 36/5 |
141 | 3443.152 | |
142 | 3467.571 | |
143 | 3491.991 | |
144 | 3516.41 | |
145 | 3540.83 | |
146 | 3565.25 | |
147 | 3589.669 | |
148 | 3614.089 | |
149 | 3638.508 | |
150 | 3662.928 | |
151 | 3687.347 | |
152 | 3711.767 | |
153 | 3736.186 | |
154 | 3760.606 | |
155 | 3785.025 | |
156 | 3809.445 | |
157 | 3833.864 | |
158 | 3858.284 | |
159 | 3882.703 | |
160 | 3907.123 | |
161 | 3931.542 | |
162 | 3955.962 | |
163 | 3980.381 | |
164 | 4004.801 | |
165 | 4029.22 | 41/4 |
166 | 4053.64 | 52/5 |
167 | 4078.059 | |
168 | 4102.479 | |
169 | 4126.898 | |
170 | 4151.318 | 11/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.4 | +2.8 | -6.9 | -2.5 | -0.7 | +1.1 | -10.3 | +5.5 | -5.9 | +0.0 | -4.1 |
Relative (%) | -14.1 | +11.3 | -28.2 | -10.2 | -2.8 | +4.4 | -42.3 | +22.7 | -24.3 | +0.0 | -16.9 | |
Steps (reduced) |
49 (49) |
78 (78) |
98 (98) |
114 (114) |
127 (127) |
138 (138) |
147 (147) |
156 (156) |
163 (163) |
170 (0) |
176 (6) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.8 | -2.4 | +0.3 | +10.6 | +3.4 | +2.1 | +6.2 | -9.4 | +3.8 | -3.4 | -7.1 |
Relative (%) | +15.7 | -9.7 | +1.1 | +43.6 | +13.8 | +8.6 | +25.3 | -38.4 | +15.7 | -14.1 | -29.2 | |
Steps (reduced) |
182 (12) |
187 (17) |
192 (22) |
197 (27) |
201 (31) |
205 (35) |
209 (39) |
212 (42) |
216 (46) |
219 (49) |
222 (52) |