170ed11

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 169ed11 170ed11 171ed11 →
Prime factorization 2 × 5 × 17
Step size 24.4195¢ 
Octave 49\170ed11 (1196.56¢)
Twelfth 78\170ed11 (1904.72¢) (→39\85ed11)
Consistency limit 7
Distinct consistency limit 7

170 equal divisions of the 11th harmonic (abbreviated 170ed11) is a nonoctave tuning system that divides the interval of 11/1 into 170 equal parts of about 24.4 ¢ each. Each step represents a frequency ratio of 111/170, or the 170th root of 11.

170ed11 is like 49edo, but with 11/1 instead of 2/1 being just. It helps improve the qualities of harmonics 3, 5 and 7 at the expense of 2.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 24.42
2 48.84 36/35
3 73.26 24/23, 49/47
4 97.68 18/17, 55/52
5 122.1 44/41
6 146.52 37/34, 49/45
7 170.94
8 195.36 28/25, 47/42
9 219.78 42/37
10 244.2 38/33
11 268.61
12 293.03 45/38, 58/49
13 317.45
14 341.87 28/23
15 366.29 21/17
16 390.71
17 415.13 47/37
18 439.55 49/38, 58/45
19 463.97 17/13
20 488.39 57/43
21 512.81 39/29
22 537.23 15/11
23 561.65 47/34
24 586.07
25 610.49 37/26
26 634.91
27 659.33 41/28, 60/41
28 683.75 46/31, 49/33
29 708.17
30 732.59 29/19, 55/36
31 757.01 48/31
32 781.42 11/7
33 805.84 43/27
34 830.26 21/13
35 854.68
36 879.1
37 903.52
38 927.94 41/24
39 952.36 26/15
40 976.78 51/29, 58/33
41 1001.2 41/23
42 1025.62 38/21, 47/26
43 1050.04 11/6
44 1074.46
45 1098.88
46 1123.3 44/23
47 1147.72 33/17
48 1172.14
49 1196.56
50 1220.98
51 1245.4 39/19
52 1269.81 25/12
53 1294.23 19/9
54 1318.65 15/7
55 1343.07 50/23
56 1367.49
57 1391.91 38/17
58 1416.33 34/15
59 1440.75 23/10
60 1465.17
61 1489.59 26/11
62 1514.01
63 1538.43
64 1562.85 37/15
65 1587.27 5/2
66 1611.69 33/13
67 1636.11 18/7
68 1660.53 47/18, 60/23
69 1684.95 45/17
70 1709.37 51/19
71 1733.79 49/18
72 1758.21 58/21
73 1782.62 14/5
74 1807.04 54/19
75 1831.46 49/17
76 1855.88 38/13
77 1880.3
78 1904.72
79 1929.14
80 1953.56 34/11
81 1977.98 47/15
82 2002.4
83 2026.82 29/9
84 2051.24
85 2075.66
86 2100.08 37/11
87 2124.5 58/17
88 2148.92 45/13
89 2173.34
90 2197.76
91 2222.18
92 2246.6
93 2271.02 26/7
94 2295.43
95 2319.85 42/11
96 2344.27 31/8
97 2368.69 55/14
98 2393.11
99 2417.53
100 2441.95 41/10
101 2466.37 54/13
102 2490.79
103 2515.21 47/11
104 2539.63 13/3
105 2564.05 22/5
106 2588.47 58/13
107 2612.89
108 2637.31
109 2661.73
110 2686.15
111 2710.57
112 2734.99 34/7
113 2759.41
114 2783.82
115 2808.24
116 2832.66
117 2857.08
118 2881.5 37/7
119 2905.92
120 2930.34
121 2954.76
122 2979.18
123 3003.6 17/3
124 3028.02 23/4
125 3052.44 35/6
126 3076.86
127 3101.28 6/1
128 3125.7
129 3150.12 37/6
130 3174.54
131 3198.96
132 3223.38
133 3247.8
134 3272.22
135 3296.63 47/7
136 3321.05
137 3345.47
138 3369.89 7/1
139 3394.31
140 3418.73 36/5
141 3443.15
142 3467.57
143 3491.99
144 3516.41
145 3540.83
146 3565.25
147 3589.67
148 3614.09
149 3638.51
150 3662.93
151 3687.35
152 3711.77
153 3736.19
154 3760.61
155 3785.03
156 3809.44
157 3833.86
158 3858.28
159 3882.7
160 3907.12
161 3931.54
162 3955.96
163 3980.38
164 4004.8
165 4029.22 41/4
166 4053.64 52/5
167 4078.06
168 4102.48
169 4126.9
170 4151.32 11/1

Harmonics

Approximation of harmonics in 170ed11
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -3.4 +2.8 -6.9 -2.5 -0.7 +1.1 -10.3 +5.5 -5.9 +0.0 -4.1
Relative (%) -14.1 +11.3 -28.2 -10.2 -2.8 +4.4 -42.3 +22.7 -24.3 +0.0 -16.9
Steps
(reduced)
49
(49)
78
(78)
98
(98)
114
(114)
127
(127)
138
(138)
147
(147)
156
(156)
163
(163)
170
(0)
176
(6)
Approximation of harmonics in 170ed11
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +3.8 -2.4 +0.3 +10.6 +3.4 +2.1 +6.2 -9.4 +3.8 -3.4 -7.1
Relative (%) +15.7 -9.7 +1.1 +43.6 +13.8 +8.6 +25.3 -38.4 +15.7 -14.1 -29.2
Steps
(reduced)
182
(12)
187
(17)
192
(22)
197
(27)
201
(31)
205
(35)
209
(39)
212
(42)
216
(46)
219
(49)
222
(52)