15ed5

From Xenharmonic Wiki
Jump to navigation Jump to search
← 14ed515ed516ed5 →
Prime factorization 3 × 5
Step size 185.754¢ 
Octave 6\15ed5 (1114.53¢) (→2\5ed5)
Twelfth 10\15ed5 (1857.54¢) (→2\3ed5)
Consistency limit 3
Distinct consistency limit 3

15 equal divisions of the 5th harmonic (abbreviated 15ed5) is a nonoctave tuning system that divides the interval of 5/1 into 15 equal parts of about 186 ¢ each. Each step represents a frequency ratio of 51/15, or the 15th root of 5. A multiple of 5ed5 It approximates the 7th, 12th, 13th, 18th, 31st and 43rd harmonics with some accuracy (but especially the 31st!). Hyperpyth analogues of blackwood of course are warranted.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 185.754 10/9, 11/10, 19/17, 21/19
2 371.508 21/17
3 557.263 15/11
4 743.017 14/9, 17/11, 23/15
5 928.771 17/10, 19/11
6 1114.525 17/9, 19/10, 21/11
7 1300.28 15/7, 19/9, 21/10
8 1486.034 7/3
9 1671.788 13/5
10 1857.542
11 2043.297 23/7
12 2229.051 11/3
13 2414.805
14 2600.559 9/2
15 2786.314 5/1

Harmonics

Approximation of harmonics in 15ed5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -85.5 -44.4 +14.8 +0.0 +55.9 -25.2 -70.7 -88.8 -85.5 -64.7 -29.6
Relative (%) -46.0 -23.9 +8.0 +0.0 +30.1 -13.6 -38.0 -47.8 -46.0 -34.8 -15.9
Steps
(reduced)
6
(6)
10
(10)
13
(13)
15
(0)
17
(2)
18
(3)
19
(4)
20
(5)
21
(6)
22
(7)
23
(8)
Approximation of harmonics in 15ed5
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +17.6 +75.0 -44.4 +29.6 -75.3 +11.5 -82.1 +14.8 -69.7 +35.6 -41.4
Relative (%) +9.5 +40.4 -23.9 +15.9 -40.6 +6.2 -44.2 +8.0 -37.5 +19.1 -22.3
Steps
(reduced)
24
(9)
25
(10)
25
(10)
26
(11)
26
(11)
27
(12)
27
(12)
28
(13)
28
(13)
29
(14)
29
(14)