15ed5
Jump to navigation
Jump to search
Prime factorization
3 × 5
Step size
185.754¢
Octave
6\15ed5 (1114.53¢) (→2\5ed5)
Twelfth
10\15ed5 (1857.54¢) (→2\3ed5)
Consistency limit
3
Distinct consistency limit
3
← 14ed5 | 15ed5 | 16ed5 → |
15 equal divisions of the 5th harmonic (abbreviated 15ed5) is a nonoctave tuning system that divides the interval of 5/1 into 15 equal parts of about 186 ¢ each. Each step represents a frequency ratio of 51/15, or the 15th root of 5. A multiple of 5ed5 It approximates the 7th, 12th, 13th, 18th, 31st and 43rd harmonics with some accuracy (but especially the 31st!). Hyperpyth analogues of blackwood of course are warranted.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 185.8 | 10/9, 11/10, 19/17, 21/19 |
2 | 371.5 | 21/17 |
3 | 557.3 | 15/11 |
4 | 743 | 14/9, 17/11, 23/15 |
5 | 928.8 | 17/10, 19/11 |
6 | 1114.5 | 17/9, 19/10, 21/11 |
7 | 1300.3 | 15/7, 19/9, 21/10 |
8 | 1486 | 7/3 |
9 | 1671.8 | 13/5 |
10 | 1857.5 | |
11 | 2043.3 | 23/7 |
12 | 2229.1 | 11/3 |
13 | 2414.8 | |
14 | 2600.6 | 9/2 |
15 | 2786.3 | 5/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -85.5 | -44.4 | +14.8 | +0.0 | +55.9 | -25.2 | -70.7 | -88.8 | -85.5 | -64.7 | -29.6 |
Relative (%) | -46.0 | -23.9 | +8.0 | +0.0 | +30.1 | -13.6 | -38.0 | -47.8 | -46.0 | -34.8 | -15.9 | |
Steps (reduced) |
6 (6) |
10 (10) |
13 (13) |
15 (0) |
17 (2) |
18 (3) |
19 (4) |
20 (5) |
21 (6) |
22 (7) |
23 (8) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +17.6 | +75.0 | -44.4 | +29.6 | -75.3 | +11.5 | -82.1 | +14.8 | -69.7 | +35.6 | -41.4 |
Relative (%) | +9.5 | +40.4 | -23.9 | +15.9 | -40.6 | +6.2 | -44.2 | +8.0 | -37.5 | +19.1 | -22.3 | |
Steps (reduced) |
24 (9) |
25 (10) |
25 (10) |
26 (11) |
26 (11) |
27 (12) |
27 (12) |
28 (13) |
28 (13) |
29 (14) |
29 (14) |