119ed6
Jump to navigation
Jump to search
Prime factorization
7 × 17
Step size
26.0668¢
Octave
46\119ed6 (1199.08¢)
Twelfth
73\119ed6 (1902.88¢)
Consistency limit
18
Distinct consistency limit
10
← 118ed6 | 119ed6 | 120ed6 → |
Division of the sixth harmonic into 119 equal parts (119ED6) is related to 46edo, but with the 6/1 rather than the 2/1 being just. The octave is about 0.92 cents compressed and the step size is about 26.0668 cents. It is consistent to the 18-integer-limit, whereas 46edo is only consistent up to the 14-integer-limit.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.9 | +0.9 | +2.8 | -6.2 | -6.7 | -9.2 | -4.4 | +11.6 | -6.4 | +9.4 | -1.8 |
Relative (%) | -3.5 | +3.5 | +10.9 | -23.8 | -25.7 | -35.2 | -16.8 | +44.5 | -24.4 | +36.0 | -6.9 | |
Steps (reduced) |
46 (46) |
73 (73) |
107 (107) |
129 (10) |
159 (40) |
170 (51) |
188 (69) |
196 (77) |
208 (89) |
224 (105) |
228 (109) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.7 | +9.4 | +5.2 | +7.6 | +8.1 | +4.9 | -0.6 | -6.7 | -2.8 | +1.3 | -5.2 |
Relative (%) | +18.0 | +36.3 | +19.9 | +29.2 | +31.2 | +19.0 | -2.4 | -25.5 | -10.7 | +4.8 | -19.8 | |
Steps (reduced) |
240 (2) |
247 (9) |
250 (12) |
256 (18) |
264 (26) |
271 (33) |
273 (35) |
279 (41) |
283 (45) |
285 (47) |
290 (52) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |