1084edo
Jump to navigation
Jump to search
Prime factorization
22 × 271
Step size
1.10701¢
Fifth
634\1084 (701.845¢) (→317\542)
Semitones (A1:m2)
102:82 (112.9¢ : 90.77¢)
Consistency limit
17
Distinct consistency limit
17
← 1083edo | 1084edo | 1085edo → |
1084 equal divisions of the octave (abbreviated 1084edo or 1084ed2), also called 1084-tone equal temperament (1084tet) or 1084 equal temperament (1084et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1084 equal parts of about 1.11 ¢ each. Each step represents a frequency ratio of 21/1084, or the 1084th root of 2.
Odd harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | -0.110 | +0.033 | -0.191 | -0.026 | -0.306 | +0.211 | +0.273 | +0.508 | -0.057 | -0.386 |
Relative (%) | +0.0 | -9.9 | +3.0 | -17.3 | -2.4 | -27.7 | +19.0 | +24.7 | +45.9 | -5.1 | -34.9 | |
Steps (reduced) |
1084 (0) |
1718 (634) |
2517 (349) |
3043 (875) |
3750 (498) |
4011 (759) |
4431 (95) |
4605 (269) |
4904 (568) |
5266 (930) |
5370 (1034) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |