1084edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1083edo 1084edo 1085edo →
Prime factorization 22 × 271
Step size 1.10701¢ 
Fifth 634\1084 (701.845¢) (→317\542)
Semitones (A1:m2) 102:82 (112.9¢ : 90.77¢)
Consistency limit 17
Distinct consistency limit 17

1084 equal divisions of the octave (abbreviated 1084edo or 1084ed2), also called 1084-tone equal temperament (1084tet) or 1084 equal temperament (1084et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1084 equal parts of about 1.11 ¢ each. Each step represents a frequency ratio of 21/1084, or the 1084th root of 2.

Odd harmonics

Approximation of prime harmonics in 1084edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.110 +0.033 -0.191 -0.026 -0.306 +0.211 +0.273 +0.508 -0.057 -0.386
Relative (%) +0.0 -9.9 +3.0 -17.3 -2.4 -27.7 +19.0 +24.7 +45.9 -5.1 -34.9
Steps
(reduced)
1084
(0)
1718
(634)
2517
(349)
3043
(875)
3750
(498)
4011
(759)
4431
(95)
4605
(269)
4904
(568)
5266
(930)
5370
(1034)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.