6edf

From Xenharmonic Wiki
Revision as of 09:26, 30 June 2011 by Wikispaces>xenwolf (**Imported revision 239488549 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author xenwolf and made on 2011-06-30 09:26:31 UTC.
The original revision id was 239488549.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=Equal division of the perfect fifth (3/2) into 6 equal parts= 
(a.k.a. "6th root of 3/2")

The single step of 6-edf is 116.9925 cents. This is very close to the size of the [[Regular temperaments#miracle|miracle]] generator, and thus this scale is close to the "nonoctave miracle" scale...
==Compositions== 
[[http://www.seraph.it/XenoTunes3.html|Metashakti]] [[http://www.seraph.it/XenoTunes3_files/metashakti.mp3|play]] by [[Carlo Serafini]]

==Intervals== 
|| degrees || cents ~ cents octave-reduced ||
|| 0 || 0 (perfect unison, 1:1) ||
|| 1 || 117 ||
|| 2 || 234 ||
|| 3 || 351 ||
|| 4 || 468 ||
|| 5 || 585 ||
|| 6 || 702 (just perfect fifth, 3:2) ||
|| 7 || 819 ||
|| 8 || 936 ||
|| 9 || 1053 ||
|| 10 || 1170 ||
|| 11 || 1287 ~ 87 ||
|| 12 || 1404 ~ 204 (just major whole tone/ninth, 9:4) ||
|| 13 || 1521 ~ 321 ||
|| 14 || 1638 ~ 438 ||
|| 16 || 1872 ~ 672 ||
|| 17 || 1988 ~ 788 ||
|| 18 || 2106 ~ 906 (Pythagorean major sixth, 27:8) ||
|| 19 || 2223 ~ 1023 ||
|| 20 || 2340 ~ 1140 ||
|| 21 || 2457 ~ 57 ||
|| 22 || 2574 ~ 174 ||
|| 23 || 2691 ~ 291 ||
|| 24 || 2808 ~ 408 (Pythagorean major third, 81:16) ||

Original HTML content:

<html><head><title>6edf</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Equal division of the perfect fifth (3/2) into 6 equal parts"></a><!-- ws:end:WikiTextHeadingRule:0 -->Equal division of the perfect fifth (3/2) into 6 equal parts</h1>
 (a.k.a. &quot;6th root of 3/2&quot;)<br />
<br />
The single step of 6-edf is 116.9925 cents. This is very close to the size of the <a class="wiki_link" href="/Regular%20temperaments#miracle">miracle</a> generator, and thus this scale is close to the &quot;nonoctave miracle&quot; scale...<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="Equal division of the perfect fifth (3/2) into 6 equal parts-Compositions"></a><!-- ws:end:WikiTextHeadingRule:2 -->Compositions</h2>
 <a class="wiki_link_ext" href="http://www.seraph.it/XenoTunes3.html" rel="nofollow">Metashakti</a> <a class="wiki_link_ext" href="http://www.seraph.it/XenoTunes3_files/metashakti.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Carlo%20Serafini">Carlo Serafini</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Equal division of the perfect fifth (3/2) into 6 equal parts-Intervals"></a><!-- ws:end:WikiTextHeadingRule:4 -->Intervals</h2>
 

<table class="wiki_table">
    <tr>
        <td>degrees<br />
</td>
        <td>cents ~ cents octave-reduced<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0 (perfect unison, 1:1)<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>117<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>234<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>351<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>468<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>585<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>702 (just perfect fifth, 3:2)<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>819<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>936<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>1053<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>1170<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>1287 ~ 87<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>1404 ~ 204 (just major whole tone/ninth, 9:4)<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>1521 ~ 321<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>1638 ~ 438<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>1872 ~ 672<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>1988 ~ 788<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>2106 ~ 906 (Pythagorean major sixth, 27:8)<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>2223 ~ 1023<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>2340 ~ 1140<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>2457 ~ 57<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>2574 ~ 174<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>2691 ~ 291<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>2808 ~ 408 (Pythagorean major third, 81:16)<br />
</td>
    </tr>
</table>

</body></html>