3L 4s
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Andrew_Heathwaite and made on 2009-11-06 00:01:44 UTC.
- The original revision id was 100671061.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=3L 4s - "mosh"= MOS scales of this form are built from a generator that falls between 1\3 (one degree of [[3edo]] - 400 cents) and 2\7 (two degrees of [[7edo]] - 343 cents. It has the form s L s L s L s and its various "modes" are: s L s L s L s L s L s L s s s L s L s s L L s L s s L s s L s s L s L L s s L s L s s s L s L s L One can build a continuum of equal-tempered scales between 1\3 and 2\7 by taking "freshman sums," adding together the numerators, then adding together the denominators. <span style="-webkit-border-horizontal-spacing: 2px; -webkit-border-vertical-spacing: 2px; border-collapse: collapse;"> </span> ||||||||||~ generator || g || 2g || || 1\3 || || || || || 400.000 || 800.000 || || || || || || || 6\19 || 378.947 || 757.895 || || || || || || 5\16 || || 375.000 || 750.000 || || || || || || || 9\29 || 372.414 || 744.828 || || || || || 4\13 || || || 369.231 || 738.462 || || || || || || || 11\36 || 366.667 || 733.333 || || || || || || 7\23 || || 365.217 || 730.435 || || || || || || || 10\33 || 363.636 || 727.272 || || || || 3\10 || || || || 360.000 || 720.000 || || || || || || || 11\37 || 356.757 || 713.514 || || || || || || 8\27 || || 355.556 || 711.111 || || || || || || || 13\44 || 354.545 || 709.091 || || || || || 5\17 || || || 352.941 || 705.882 || || || || || || || 12\41 || 351.220 || 702.439 || || || || || || 7\24 || || 350.000 || 700.000 || || || || || || || 9\31 || 348.387 || 696.774 || || || 2\7 || || || || || 342.847 || 685.714 || || 3\10 on this chart represents a dividing line between what I call "neutral scales" on the bottom (eg. [[17edo neutral scale]]), and something else I don't have a name for yet on the top, with [[10edo]] standing in between. MOS-wise, the neutral scales, after three more generations, make MOS [[7L 3s]] ("unfair mosh"); the other scales make MOS [[3L 7s]] ("fair mosh"). In "neural scale territory," the generators are all "neutral thirds," and two of them make an approximation of the "perfect fifth." Additionally, the L of the scale is somewhere around a "whole tone" and the s of the scale is somewhere around a "neutral tone". In the as-yet unnamed northern territory, the generators are major thirds (including some very flat ones), and two generators are definitely sharp of a perfect fifth. L is a "supermajor second" and s is a "semitone" or smaller.
Original HTML content:
<html><head><title>3L 4s</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x3L 4s - "mosh""></a><!-- ws:end:WikiTextHeadingRule:0 -->3L 4s - "mosh"</h1> <br /> MOS scales of this form are built from a generator that falls between 1\3 (one degree of <a class="wiki_link" href="/3edo">3edo</a> - 400 cents) and 2\7 (two degrees of <a class="wiki_link" href="/7edo">7edo</a> - 343 cents.<br /> <br /> It has the form s L s L s L s and its various "modes" are:<br /> <br /> s L s L s L s<br /> L s L s L s s<br /> s L s L s s L<br /> L s L s s L s<br /> s L s s L s L<br /> L s s L s L s<br /> s s L s L s L<br /> <br /> One can build a continuum of equal-tempered scales between 1\3 and 2\7 by taking "freshman sums," adding together the numerators, then adding together the denominators.<br /> <br /> <span style="-webkit-border-horizontal-spacing: 2px; -webkit-border-vertical-spacing: 2px; border-collapse: collapse;"><br /> </span><br /> <table class="wiki_table"> <tr> <th colspan="5">generator<br /> </th> <td>g<br /> </td> <td>2g<br /> </td> </tr> <tr> <td>1\3<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>400.000<br /> </td> <td>800.000<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>6\19<br /> </td> <td>378.947<br /> </td> <td>757.895<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>5\16<br /> </td> <td><br /> </td> <td>375.000<br /> </td> <td>750.000<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>9\29<br /> </td> <td>372.414<br /> </td> <td>744.828<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>4\13<br /> </td> <td><br /> </td> <td><br /> </td> <td>369.231<br /> </td> <td>738.462<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>11\36<br /> </td> <td>366.667<br /> </td> <td>733.333<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>7\23<br /> </td> <td><br /> </td> <td>365.217<br /> </td> <td>730.435<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>10\33<br /> </td> <td>363.636<br /> </td> <td>727.272<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>3\10<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>360.000<br /> </td> <td>720.000<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>11\37<br /> </td> <td>356.757<br /> </td> <td>713.514<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>8\27<br /> </td> <td><br /> </td> <td>355.556<br /> </td> <td>711.111<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>13\44<br /> </td> <td>354.545<br /> </td> <td>709.091<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>5\17<br /> </td> <td><br /> </td> <td><br /> </td> <td>352.941<br /> </td> <td>705.882<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>12\41<br /> </td> <td>351.220<br /> </td> <td>702.439<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>7\24<br /> </td> <td><br /> </td> <td>350.000<br /> </td> <td>700.000<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>9\31<br /> </td> <td>348.387<br /> </td> <td>696.774<br /> </td> <td><br /> </td> </tr> <tr> <td>2\7<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>342.847<br /> </td> <td>685.714<br /> </td> <td><br /> </td> </tr> </table> <br /> 3\10 on this chart represents a dividing line between what I call "neutral scales" on the bottom (eg. <a class="wiki_link" href="/17edo%20neutral%20scale">17edo neutral scale</a>), and something else I don't have a name for yet on the top, with <a class="wiki_link" href="/10edo">10edo</a> standing in between. MOS-wise, the neutral scales, after three more generations, make MOS <a class="wiki_link" href="/7L%203s">7L 3s</a> ("unfair mosh"); the other scales make MOS <a class="wiki_link" href="/3L%207s">3L 7s</a> ("fair mosh").<br /> <br /> In "neural scale territory," the generators are all "neutral thirds," and two of them make an approximation of the "perfect fifth." Additionally, the L of the scale is somewhere around a "whole tone" and the s of the scale is somewhere around a "neutral tone".<br /> <br /> In the as-yet unnamed northern territory, the generators are major thirds (including some very flat ones), and two generators are definitely sharp of a perfect fifth. L is a "supermajor second" and s is a "semitone" or smaller.</body></html>