3L 4s

From Xenharmonic Wiki
Revision as of 00:01, 6 November 2009 by Wikispaces>Andrew_Heathwaite (**Imported revision 100671061 - Original comment: **)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Andrew_Heathwaite and made on 2009-11-06 00:01:44 UTC.
The original revision id was 100671061.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=3L 4s - "mosh"= 

MOS scales of this form are built from a generator that falls between 1\3 (one degree of [[3edo]] - 400 cents) and 2\7 (two degrees of [[7edo]] - 343 cents.

It has the form s L s L s L s and its various "modes" are:

s L s L s L s
L s L s L s s
s L s L s s L
L s L s s L s
s L s s L s L
L s s L s L s
s s L s L s L

One can build a continuum of equal-tempered scales between 1\3 and 2\7 by taking "freshman sums," adding together the numerators, then adding together the denominators.

<span style="-webkit-border-horizontal-spacing: 2px; -webkit-border-vertical-spacing: 2px; border-collapse: collapse;">
</span>
||||||||||~ generator || g || 2g ||
|| 1\3 ||   ||   ||   ||   || 400.000 || 800.000 ||   ||
||   ||   ||   ||   || 6\19 || 378.947 || 757.895 ||   ||
||   ||   ||   || 5\16 ||   || 375.000 || 750.000 ||   ||
||   ||   ||   ||   || 9\29 || 372.414 || 744.828 ||   ||
||   ||   || 4\13 ||   ||   || 369.231 || 738.462 ||   ||
||   ||   ||   ||   || 11\36 || 366.667 || 733.333 ||   ||
||   ||   ||   || 7\23 ||   || 365.217 || 730.435 ||   ||
||   ||   ||   ||   || 10\33 || 363.636 || 727.272 ||   ||
||   || 3\10 ||   ||   ||   || 360.000 || 720.000 ||   ||
||   ||   ||   ||   || 11\37 || 356.757 || 713.514 ||   ||
||   ||   ||   || 8\27 ||   || 355.556 || 711.111 ||   ||
||   ||   ||   ||   || 13\44 || 354.545 || 709.091 ||   ||
||   ||   || 5\17 ||   ||   || 352.941 || 705.882 ||   ||
||   ||   ||   ||   || 12\41 || 351.220 || 702.439 ||   ||
||   ||   ||   || 7\24 ||   || 350.000 || 700.000 ||   ||
||   ||   ||   ||   || 9\31 || 348.387 || 696.774 ||   ||
|| 2\7 ||   ||   ||   ||   || 342.847 || 685.714 ||   ||

3\10 on this chart represents a dividing line between what I call "neutral scales" on the bottom (eg. [[17edo neutral scale]]), and something else I don't have a name for yet on the top, with [[10edo]] standing in between. MOS-wise, the neutral scales, after three more generations, make MOS [[7L 3s]] ("unfair mosh"); the other scales make MOS [[3L 7s]] ("fair mosh").

In "neural scale territory," the generators are all "neutral thirds," and two of them make an approximation of the "perfect fifth." Additionally, the L of the scale is somewhere around a "whole tone" and the s of the scale is somewhere around a "neutral tone".

In the as-yet unnamed northern territory, the generators are major thirds (including some very flat ones), and two generators are definitely sharp of a perfect fifth. L is a "supermajor second" and s is a "semitone" or smaller.

Original HTML content:

<html><head><title>3L 4s</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x3L 4s - &quot;mosh&quot;"></a><!-- ws:end:WikiTextHeadingRule:0 -->3L 4s - &quot;mosh&quot;</h1>
 <br />
MOS scales of this form are built from a generator that falls between 1\3 (one degree of <a class="wiki_link" href="/3edo">3edo</a> - 400 cents) and 2\7 (two degrees of <a class="wiki_link" href="/7edo">7edo</a> - 343 cents.<br />
<br />
It has the form s L s L s L s and its various &quot;modes&quot; are:<br />
<br />
s L s L s L s<br />
L s L s L s s<br />
s L s L s s L<br />
L s L s s L s<br />
s L s s L s L<br />
L s s L s L s<br />
s s L s L s L<br />
<br />
One can build a continuum of equal-tempered scales between 1\3 and 2\7 by taking &quot;freshman sums,&quot; adding together the numerators, then adding together the denominators.<br />
<br />
<span style="-webkit-border-horizontal-spacing: 2px; -webkit-border-vertical-spacing: 2px; border-collapse: collapse;"><br />
</span><br />


<table class="wiki_table">
    <tr>
        <th colspan="5">generator<br />
</th>
        <td>g<br />
</td>
        <td>2g<br />
</td>
    </tr>
    <tr>
        <td>1\3<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>400.000<br />
</td>
        <td>800.000<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>6\19<br />
</td>
        <td>378.947<br />
</td>
        <td>757.895<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5\16<br />
</td>
        <td><br />
</td>
        <td>375.000<br />
</td>
        <td>750.000<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>9\29<br />
</td>
        <td>372.414<br />
</td>
        <td>744.828<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>4\13<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>369.231<br />
</td>
        <td>738.462<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>11\36<br />
</td>
        <td>366.667<br />
</td>
        <td>733.333<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>7\23<br />
</td>
        <td><br />
</td>
        <td>365.217<br />
</td>
        <td>730.435<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>10\33<br />
</td>
        <td>363.636<br />
</td>
        <td>727.272<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>3\10<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>360.000<br />
</td>
        <td>720.000<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>11\37<br />
</td>
        <td>356.757<br />
</td>
        <td>713.514<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>8\27<br />
</td>
        <td><br />
</td>
        <td>355.556<br />
</td>
        <td>711.111<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>13\44<br />
</td>
        <td>354.545<br />
</td>
        <td>709.091<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>5\17<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>352.941<br />
</td>
        <td>705.882<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>12\41<br />
</td>
        <td>351.220<br />
</td>
        <td>702.439<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>7\24<br />
</td>
        <td><br />
</td>
        <td>350.000<br />
</td>
        <td>700.000<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>9\31<br />
</td>
        <td>348.387<br />
</td>
        <td>696.774<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2\7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>342.847<br />
</td>
        <td>685.714<br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
3\10 on this chart represents a dividing line between what I call &quot;neutral scales&quot; on the bottom (eg. <a class="wiki_link" href="/17edo%20neutral%20scale">17edo neutral scale</a>), and something else I don't have a name for yet on the top, with <a class="wiki_link" href="/10edo">10edo</a> standing in between. MOS-wise, the neutral scales, after three more generations, make MOS <a class="wiki_link" href="/7L%203s">7L 3s</a> (&quot;unfair mosh&quot;); the other scales make MOS <a class="wiki_link" href="/3L%207s">3L 7s</a> (&quot;fair mosh&quot;).<br />
<br />
In &quot;neural scale territory,&quot; the generators are all &quot;neutral thirds,&quot; and two of them make an approximation of the &quot;perfect fifth.&quot; Additionally, the L of the scale is somewhere around a &quot;whole tone&quot; and the s of the scale is somewhere around a &quot;neutral tone&quot;.<br />
<br />
In the as-yet unnamed northern territory, the generators are major thirds (including some very flat ones), and two generators are definitely sharp of a perfect fifth. L is a &quot;supermajor second&quot; and s is a &quot;semitone&quot; or smaller.</body></html>