359edo

From Xenharmonic Wiki
Revision as of 12:35, 16 August 2015 by Wikispaces>genewardsmith (**Imported revision 556760633 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2015-08-16 12:35:42 UTC.
The original revision id was 556760633.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;">359 tone equal temperament</span>= 

359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; <span style="font-size: 13px; line-height: 1.5;">with the </span>**<span style="font-size: 13px; line-height: 1.5;">210\359</span>**<span style="font-size: 13px; line-height: 1.5;"> step of </span>**<span style="font-size: 13px; line-height: 1.5;">701.94986 cents</span>**<span style="font-size: 13px; line-height: 1.5;">. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = </span>**<span style="font-size: 13px; line-height: 1.5;">678.495 cents,</span>**<span style="font-size: 13px; line-height: 1.5;"> in 359-EDO this is the step </span>**<span style="font-size: 13px; line-height: 1.5;">203\359</span>**<span style="font-size: 13px; line-height: 1.5;"> of </span>**<span style="font-size: 13px; line-height: 1.5;">678.55153 cents.</span>**
**Pythagorean diatonic scale: 61 61 27 61 61 61 27**
**Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).**

Original HTML content:

<html><head><title>359edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x359 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;">359 tone equal temperament</span></h1>
 <br />
359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; <span style="font-size: 13px; line-height: 1.5;">with the </span><strong><span style="font-size: 13px; line-height: 1.5;">210\359</span></strong><span style="font-size: 13px; line-height: 1.5;"> step of </span><strong><span style="font-size: 13px; line-height: 1.5;">701.94986 cents</span></strong><span style="font-size: 13px; line-height: 1.5;">. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = </span><strong><span style="font-size: 13px; line-height: 1.5;">678.495 cents,</span></strong><span style="font-size: 13px; line-height: 1.5;"> in 359-EDO this is the step </span><strong><span style="font-size: 13px; line-height: 1.5;">203\359</span></strong><span style="font-size: 13px; line-height: 1.5;"> of </span><strong><span style="font-size: 13px; line-height: 1.5;">678.55153 cents.</span></strong><br />
<strong>Pythagorean diatonic scale: 61 61 27 61 61 61 27</strong><br />
<strong>Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).</strong></body></html>