34edo

From Xenharmonic Wiki
Revision as of 02:23, 12 July 2011 by Wikispaces>Osmiorisbendi (**Imported revision 240946537 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Osmiorisbendi and made on 2011-07-12 02:23:11 UTC.
The original revision id was 240946537.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #991785; font-family: 'Times New Roman',Times,serif; font-size: 113%;">34 tone equal temperament</span>= 

//**34edo**// divides the octave into 34 equal steps of approximately 35.29412 cents. 34edo contains two [[17edo]]'s and the half-octave tritone of 600 cents. As a Fibonacci number, 34edo contains a close approximation to the irrational interval phi -- 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates [[MOSScales|Moment of Symmetry]] scales with near-phi relationships between the step sizes.


===Approximations to Just Intonation=== 
Like [[17edo]], 34edo contains workable approximations of just intervals involving 13 and 3 -- specifically, 13/8, 13/12, 13/9 and their inversions -- while failing to closely approximate ratios of 7 or 11. 34edo adds ratios of 5 into the mix, including: 5/4, 6/5, 9/5, 15/8, 13/10, 15/13, and their inversions. Since it distinguishes between 9/8 and 10/9 (exaggerating the difference between them, the syntonic comma of 81/80, from 21.5 cents to 35.3 cents), it is suitable for 5-limit JI. It is not a [[meantone|meantone ]]system.

//Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B, thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9.// ([[http://en.wikipedia.org/wiki/34_equal_temperament|Wikipedia]])

===Intervals:=== 
|| degrees of 34edo || cents ||
|| 0 || 0.0 ||
|| 1 || 35.294 ||
|| 2 || 70.588 ||
|| 3 || 105.882 ||
|| 4 || 141.176 ||
|| 5 || 176.471 ||
|| 6 || 211.765 ||
|| 7 || 247.059 ||
|| 8 || 282.353 ||
|| 9 || 317.647 ||
|| 10 || 352.941 ||
|| 11 || 388.235 ||
|| 12 || 423.529 ||
|| 13 || 458.823 ||
|| 14 || 494.118 ||
|| 15 || 529.412 ||
|| 16 || 564.706 ||
|| 17 || 600 ||
|| 18 || 635.294 ||
|| 19 || 670.588 ||
|| 20 || 705.882 ||
|| 21 || 741.176 ||
|| 22 || 776.471 ||
|| 23 || 811.765 ||
|| 24 || 847.059 ||
|| 25 || 882.353 ||
|| 26 || 917.647 ||
|| 27 || 952.941 ||
|| 28 || 988.235 ||
|| 29 || 1023.529 ||
|| 30 || 1058.823 ||
|| 31 || 1094.118 ||
|| 32 || 1129.412 ||
|| 33 || 1164.706 ||


==Listen== 
* [[@http://www.archive.org/details/Ascension_105|Ascension]]
Drums Bass and 34-tone guitar

==Links== 
* [[http://www.microstick.net/34guitararticle.htm|34 Equal Guitar]] by [[Larry Hanson]]

Original HTML content:

<html><head><title>34edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x34 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #991785; font-family: 'Times New Roman',Times,serif; font-size: 113%;">34 tone equal temperament</span></h1>
 <br />
<em><strong>34edo</strong></em> divides the octave into 34 equal steps of approximately 35.29412 cents. 34edo contains two <a class="wiki_link" href="/17edo">17edo</a>'s and the half-octave tritone of 600 cents. As a Fibonacci number, 34edo contains a close approximation to the irrational interval phi -- 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates <a class="wiki_link" href="/MOSScales">Moment of Symmetry</a> scales with near-phi relationships between the step sizes.<br />
<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x34 tone equal temperament--Approximations to Just Intonation"></a><!-- ws:end:WikiTextHeadingRule:2 -->Approximations to Just Intonation</h3>
 Like <a class="wiki_link" href="/17edo">17edo</a>, 34edo contains workable approximations of just intervals involving 13 and 3 -- specifically, 13/8, 13/12, 13/9 and their inversions -- while failing to closely approximate ratios of 7 or 11. 34edo adds ratios of 5 into the mix, including: 5/4, 6/5, 9/5, 15/8, 13/10, 15/13, and their inversions. Since it distinguishes between 9/8 and 10/9 (exaggerating the difference between them, the syntonic comma of 81/80, from 21.5 cents to 35.3 cents), it is suitable for 5-limit JI. It is not a <a class="wiki_link" href="/meantone">meantone </a>system.<br />
<br />
<em>Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B, thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9.</em> (<a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/34_equal_temperament" rel="nofollow">Wikipedia</a>)<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h3&gt; --><h3 id="toc2"><a name="x34 tone equal temperament--Intervals:"></a><!-- ws:end:WikiTextHeadingRule:4 -->Intervals:</h3>
 

<table class="wiki_table">
    <tr>
        <td>degrees of 34edo<br />
</td>
        <td>cents<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0.0<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>35.294<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>70.588<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>105.882<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>141.176<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>176.471<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>211.765<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>247.059<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>282.353<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>317.647<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>352.941<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>388.235<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>423.529<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>458.823<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>494.118<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>529.412<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>564.706<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>600<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>635.294<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>670.588<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>705.882<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>741.176<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>776.471<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>811.765<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>847.059<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>882.353<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>917.647<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>952.941<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>988.235<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>1023.529<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>1058.823<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>1094.118<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>1129.412<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>1164.706<br />
</td>
    </tr>
</table>

<br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="x34 tone equal temperament-Listen"></a><!-- ws:end:WikiTextHeadingRule:6 -->Listen</h2>
 <ul><li><a class="wiki_link_ext" href="http://www.archive.org/details/Ascension_105" rel="nofollow" target="_blank">Ascension</a></li></ul>Drums Bass and 34-tone guitar<br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="x34 tone equal temperament-Links"></a><!-- ws:end:WikiTextHeadingRule:8 -->Links</h2>
 <ul><li><a class="wiki_link_ext" href="http://www.microstick.net/34guitararticle.htm" rel="nofollow">34 Equal Guitar</a> by <a class="wiki_link" href="/Larry%20Hanson">Larry Hanson</a></li></ul></body></html>