17edo neutral scale

From Xenharmonic Wiki
Revision as of 18:33, 6 April 2009 by Wikispaces>Andrew_Heathwaite (**Imported revision 66632971 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Andrew_Heathwaite and made on 2009-04-06 18:33:20 UTC.
The original revision id was 66632971.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=17edo neutral scale= 

A lovely system of Middle-Eastern flavored scales!

We can call the [[MOSScales|Moment of Symmetry]] scale derived from a 5/17 generator & an octave repeat the **17edo Neutral Scale**. We build it by stacking neutral thirds; in 17edo that means the interval of five degrees of 17.

Begin anywhere. Let's call our first pitch (& its octave transposition) 0:

0 (0)

Add a note a neutral third (five degrees) up from 0:

0 5 (0)

Add a note a neutral third down from 0 (remember, in 17edo, 0=17):

0 5 12 (0)

Between these notes we have intervals of:

5 7 5

Since we have two different step sizes, we have arrived at a three-note MOS scale. But let's continue; three-note scales don't give us much to work with.

Add an N3 up from 5:

0 5 10 12 (0)

Add an N3 down from 12:

0 5 7 10 12 (0)

Add an N3 up from 10:

0 5 7 10 12 15 (0)

Add an N3 down from 7:

0 2 5 7 10 12 15 (0)

We have arrived again at a MOS scale.

==7-note neutral scale:== 

degrees from 0: 0 2 5 7 10 12 15 (0)
cents from 0: 0 141 353 494 706 847 1059 (1200)
interval classes from P1: P1 N2 N3 P4 P5 N6 N7 (P8)

degrees between: 2 3 2 3 2 3 2
cents between: 141 212 141 212 141 212 141
interval classes between: N2 M2 N2 M2 N2 M2 N2

===modes of 7-note neutral scale=== 

Naturally, with seven notes we have seven modes, depending on which note we make the starting pitch (tonic) of the scale. I have given these modes a one-syllable name for my own use. Feel free to name (or not name) these modes as you see fit:
==== ==== 
|| mode 1 : bish || from bottom || in between ||
|| degrees || 0 2 5 7 10 12 15 (0) || 2 3 2 3 2 3 2 ||
|| cents || 0 141 353 494 706 847 1059 (1200) || 141 212 141 212 141 212 141 ||
|| interval classes || P1 N2 N3 P4 P5 N6 N7 (P8) || N2 M2 N2 M2 N2 M2 N2 ||
|| solfege || do ru mu fa sol lu tu (do) || ru re ru re ru re ru ||

|| mode 2 : dril || from bottom || in between ||
|| degrees || 0 3 5 8 10 13 15 (0) || 3 2 3 2 3 2 2 ||
|| cents || 0 212 353 565 706 918 1059 (1200) || 212 141 212 141 212 141 141 ||
|| interval classes || P1 M2 N3 A4 P5 M6 N7 (P8) || M2 N2 M2 N2 M2 N2 N2 ||
|| solfege || do re mu fu sol la tu (do) || re ru re ru re ru ru ||

|| mode 3 : fish || from bottom || in between ||
|| degrees || 0 2 5 7 10 12 14 (0) || 2 3 2 3 2 2 3 ||
|| cents || 0 141 353 494 706 847 988 (1200) || 141 212 141 212 141 141 212 ||
|| interval classes || P1 N2 N3 P4 P5 N6 m7 (P8) || N2 M2 N2 M2 N2 N2 M2 ||
|| solfege || do ru mu fa sol lu te (do) || ru re ru re ru ru re ||

|| mode 4 : gil || from bottom || in between ||
|| degrees || 0 3 5 8 10 12 15 (0) || 3 2 3 2 2 3 2 ||
|| cents || 0 212 353 565 706 847 1059 (1200) || 212 131 212 141 141 212 141 ||
|| interval classes || P1 M2 N3 A4 P5 N6 N7 (P8) || M2 N2 M2 N2 N2 M2 N2 ||
|| solfege || do re mu fu sol lu tu (do) || re ru re ru ru re ru ||

|| mode 5 : jwl || from bottom || in between ||
|| degrees || 0 2 5 7 9 12 14 (0) || 2 3 2 2 3 2 3 ||
|| cents || 0 141 353 494 635 847 988 (1200) || 141 212 141 141 212 141 212 ||
|| interval classes || P1 N2 N3 P4 d5 N6 m7 (P8) || N2 M2 N2 N2 M2 N2 M2 ||
|| solfege || do ru mu fa su lu te (do) || ru re ru ru re ru re ||

|| mode 6 : kleeth || from bottom || in between ||
|| degrees || 0 3 5 7 10 12 15 (0) || 3 2 2 3 2 3 2 ||
|| cents || 0 212 353 494 706 847 1059 (1200) || 212 141 141 212 141 212 141 ||
|| interval classes || P1 M2 N3 P4 P5 N6 N7 (P8) || M2 N2 N2 M2 N2 M2 N2 ||
|| solfege || do re mu fa sol lu tu (do) || re ru ru re ru re ru ||

|| mode 7 : led || from bottom || in between ||
|| degrees || 0 2 4 7 9 12 14 (0) || 2 2 3 2 3 2 3 ||
|| cents || 0 141 282 494 635 847 988 (1200) || 141 141 212 141 212 141 212 ||
|| interval classes || P1 N2 m3 P4 d5 N6 m7 (P8) || N2 N2 M2 N2 M2 N2 M2 ||
|| solfege || do ru me fa su lu te (do) || ru ru re ru re ru re ||

As you can see, these modes contain many neutral 2nds & 3rds, making it sound very different from the traditional major-minor Western harmonic & melodic system, while having a coherent structure including ample 4ths & 5ths that help ground the scale. The 17edo neutral sixths, at 847 cents, come very close to the 13th harmonic - JI interval 13/8 - 841 cents. Thus, their inversions, the 17edo neutral thirds come very close to 16/13.

The 17edo neutral 2nds, at 141 cents, fall between 13/12 (139 cents) & 12/11 (151) cents. I've found that they generally function as 13/12, since they fall 3/2 away from 13/8. But you can discover these things for yourself, if you like, & feel free to think of them in different ways entirely.

Interestingly, the 7-note neutral scale does not allow you to build any minor or major triads whatsoever. You have only one minor 3rd, which occurs with a diminished 5th, but no perfect fifth, allowing you to build a diminished triad, but no minor triad. You have no major thirds at all. In JI-terms, you might say that it contains harmonies based on 2, 3, & 13, while skipping 7 & 11.

17-tonists may find these scales helpful for escaping the familiar. Just because you //can// play diatonic music in 17edo, doesn't mean you have to. These neutral scales give you a more xenharmonic modal system to play with.

If you continue stacking neutral thirds, you will soon come to a rather lovely 10-note neutral scale. I (or someone) will come back to that sooner or later.


(Note that you will come up with similarly structured scales by using //other neutral thirds// as generators, although some of them will sound quite different. Some equal divisions of the octave containing neutral scales: [[10edo]], [[13edo]], [[16edo]], [[19edo]], [[24edo]], [[31edo]]....)

Original HTML content:

<html><head><title>17edo neutral scale</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x17edo neutral scale"></a><!-- ws:end:WikiTextHeadingRule:0 -->17edo neutral scale</h1>
 <br />
A lovely system of Middle-Eastern flavored scales!<br />
<br />
We can call the <a class="wiki_link" href="/MOSScales">Moment of Symmetry</a> scale derived from a 5/17 generator &amp; an octave repeat the <strong>17edo Neutral Scale</strong>. We build it by stacking neutral thirds; in 17edo that means the interval of five degrees of 17.<br />
<br />
Begin anywhere. Let's call our first pitch (&amp; its octave transposition) 0:<br />
<br />
0 (0)<br />
<br />
Add a note a neutral third (five degrees) up from 0:<br />
<br />
0 5 (0)<br />
<br />
Add a note a neutral third down from 0 (remember, in 17edo, 0=17):<br />
<br />
0 5 12 (0)<br />
<br />
Between these notes we have intervals of:<br />
<br />
5 7 5<br />
<br />
Since we have two different step sizes, we have arrived at a three-note MOS scale. But let's continue; three-note scales don't give us much to work with.<br />
<br />
Add an N3 up from 5:<br />
<br />
0 5 10 12 (0)<br />
<br />
Add an N3 down from 12:<br />
<br />
0 5 7 10 12 (0)<br />
<br />
Add an N3 up from 10:<br />
<br />
0 5 7 10 12 15 (0)<br />
<br />
Add an N3 down from 7:<br />
<br />
0 2 5 7 10 12 15 (0)<br />
<br />
We have arrived again at a MOS scale.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x17edo neutral scale-7-note neutral scale:"></a><!-- ws:end:WikiTextHeadingRule:2 -->7-note neutral scale:</h2>
 <br />
degrees from 0: 0 2 5 7 10 12 15 (0)<br />
cents from 0: 0 141 353 494 706 847 1059 (1200)<br />
interval classes from P1: P1 N2 N3 P4 P5 N6 N7 (P8)<br />
<br />
degrees between: 2 3 2 3 2 3 2<br />
cents between: 141 212 141 212 141 212 141<br />
interval classes between: N2 M2 N2 M2 N2 M2 N2<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h3&gt; --><h3 id="toc2"><a name="x17edo neutral scale-7-note neutral scale:-modes of 7-note neutral scale"></a><!-- ws:end:WikiTextHeadingRule:4 -->modes of 7-note neutral scale</h3>
 <br />
Naturally, with seven notes we have seven modes, depending on which note we make the starting pitch (tonic) of the scale. I have given these modes a one-syllable name for my own use. Feel free to name (or not name) these modes as you see fit:<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h4&gt; --><h4 id="toc3"><!-- ws:end:WikiTextHeadingRule:6 --> </h4>
 

<table class="wiki_table">
    <tr>
        <td>mode 1 : bish<br />
</td>
        <td>from bottom<br />
</td>
        <td>in between<br />
</td>
    </tr>
    <tr>
        <td>degrees<br />
</td>
        <td>0 2 5 7 10 12 15 (0)<br />
</td>
        <td>2 3 2 3 2 3 2<br />
</td>
    </tr>
    <tr>
        <td>cents<br />
</td>
        <td>0 141 353 494 706 847 1059 (1200)<br />
</td>
        <td>141 212 141 212 141 212 141<br />
</td>
    </tr>
    <tr>
        <td>interval classes<br />
</td>
        <td>P1 N2 N3 P4 P5 N6 N7 (P8)<br />
</td>
        <td>N2 M2 N2 M2 N2 M2 N2<br />
</td>
    </tr>
    <tr>
        <td>solfege<br />
</td>
        <td>do ru mu fa sol lu tu (do)<br />
</td>
        <td>ru re ru re ru re ru<br />
</td>
    </tr>
</table>

<br />


<table class="wiki_table">
    <tr>
        <td>mode 2 : dril<br />
</td>
        <td>from bottom<br />
</td>
        <td>in between<br />
</td>
    </tr>
    <tr>
        <td>degrees<br />
</td>
        <td>0 3 5 8 10 13 15 (0)<br />
</td>
        <td>3 2 3 2 3 2 2<br />
</td>
    </tr>
    <tr>
        <td>cents<br />
</td>
        <td>0 212 353 565 706 918 1059 (1200)<br />
</td>
        <td>212 141 212 141 212 141 141<br />
</td>
    </tr>
    <tr>
        <td>interval classes<br />
</td>
        <td>P1 M2 N3 A4 P5 M6 N7 (P8)<br />
</td>
        <td>M2 N2 M2 N2 M2 N2 N2<br />
</td>
    </tr>
    <tr>
        <td>solfege<br />
</td>
        <td>do re mu fu sol la tu (do)<br />
</td>
        <td>re ru re ru re ru ru<br />
</td>
    </tr>
</table>

<br />


<table class="wiki_table">
    <tr>
        <td>mode 3 : fish<br />
</td>
        <td>from bottom<br />
</td>
        <td>in between<br />
</td>
    </tr>
    <tr>
        <td>degrees<br />
</td>
        <td>0 2 5 7 10 12 14 (0)<br />
</td>
        <td>2 3 2 3 2 2 3<br />
</td>
    </tr>
    <tr>
        <td>cents<br />
</td>
        <td>0 141 353 494 706 847 988 (1200)<br />
</td>
        <td>141 212 141 212 141 141 212<br />
</td>
    </tr>
    <tr>
        <td>interval classes<br />
</td>
        <td>P1 N2 N3 P4 P5 N6 m7 (P8)<br />
</td>
        <td>N2 M2 N2 M2 N2 N2 M2<br />
</td>
    </tr>
    <tr>
        <td>solfege<br />
</td>
        <td>do ru mu fa sol lu te (do)<br />
</td>
        <td>ru re ru re ru ru re<br />
</td>
    </tr>
</table>

<br />


<table class="wiki_table">
    <tr>
        <td>mode 4 : gil<br />
</td>
        <td>from bottom<br />
</td>
        <td>in between<br />
</td>
    </tr>
    <tr>
        <td>degrees<br />
</td>
        <td>0 3 5 8 10 12 15 (0)<br />
</td>
        <td>3 2 3 2 2 3 2<br />
</td>
    </tr>
    <tr>
        <td>cents<br />
</td>
        <td>0 212 353 565 706 847 1059 (1200)<br />
</td>
        <td>212 131 212 141 141 212 141<br />
</td>
    </tr>
    <tr>
        <td>interval classes<br />
</td>
        <td>P1 M2 N3 A4 P5 N6 N7 (P8)<br />
</td>
        <td>M2 N2 M2 N2 N2 M2 N2<br />
</td>
    </tr>
    <tr>
        <td>solfege<br />
</td>
        <td>do re mu fu sol lu tu (do)<br />
</td>
        <td>re ru re ru ru re ru<br />
</td>
    </tr>
</table>

<br />


<table class="wiki_table">
    <tr>
        <td>mode 5 : jwl<br />
</td>
        <td>from bottom<br />
</td>
        <td>in between<br />
</td>
    </tr>
    <tr>
        <td>degrees<br />
</td>
        <td>0 2 5 7 9 12 14 (0)<br />
</td>
        <td>2 3 2 2 3 2 3<br />
</td>
    </tr>
    <tr>
        <td>cents<br />
</td>
        <td>0 141 353 494 635 847 988 (1200)<br />
</td>
        <td>141 212 141 141 212 141 212<br />
</td>
    </tr>
    <tr>
        <td>interval classes<br />
</td>
        <td>P1 N2 N3 P4 d5 N6 m7 (P8)<br />
</td>
        <td>N2 M2 N2 N2 M2 N2 M2<br />
</td>
    </tr>
    <tr>
        <td>solfege<br />
</td>
        <td>do ru mu fa su lu te (do)<br />
</td>
        <td>ru re ru ru re ru re<br />
</td>
    </tr>
</table>

<br />


<table class="wiki_table">
    <tr>
        <td>mode 6 : kleeth<br />
</td>
        <td>from bottom<br />
</td>
        <td>in between<br />
</td>
    </tr>
    <tr>
        <td>degrees<br />
</td>
        <td>0 3 5 7 10 12 15 (0)<br />
</td>
        <td>3 2 2 3 2 3 2<br />
</td>
    </tr>
    <tr>
        <td>cents<br />
</td>
        <td>0 212 353 494 706 847 1059 (1200)<br />
</td>
        <td>212 141 141 212 141 212 141<br />
</td>
    </tr>
    <tr>
        <td>interval classes<br />
</td>
        <td>P1 M2 N3 P4 P5 N6 N7 (P8)<br />
</td>
        <td>M2 N2 N2 M2 N2 M2 N2<br />
</td>
    </tr>
    <tr>
        <td>solfege<br />
</td>
        <td>do re mu fa sol lu tu (do)<br />
</td>
        <td>re ru ru re ru re ru<br />
</td>
    </tr>
</table>

<br />


<table class="wiki_table">
    <tr>
        <td>mode 7 : led<br />
</td>
        <td>from bottom<br />
</td>
        <td>in between<br />
</td>
    </tr>
    <tr>
        <td>degrees<br />
</td>
        <td>0 2 4 7 9 12 14 (0)<br />
</td>
        <td>2 2 3 2 3 2 3<br />
</td>
    </tr>
    <tr>
        <td>cents<br />
</td>
        <td>0 141 282 494 635 847 988 (1200)<br />
</td>
        <td>141 141 212 141 212 141 212<br />
</td>
    </tr>
    <tr>
        <td>interval classes<br />
</td>
        <td>P1 N2 m3 P4 d5 N6 m7 (P8)<br />
</td>
        <td>N2 N2 M2 N2 M2 N2 M2<br />
</td>
    </tr>
    <tr>
        <td>solfege<br />
</td>
        <td>do ru me fa su lu te (do)<br />
</td>
        <td>ru ru re ru re ru re<br />
</td>
    </tr>
</table>

<br />
As you can see, these modes contain many neutral 2nds &amp; 3rds, making it sound very different from the traditional major-minor Western harmonic &amp; melodic system, while having a coherent structure including ample 4ths &amp; 5ths that help ground the scale. The 17edo neutral sixths, at 847 cents, come very close to the 13th harmonic - JI interval 13/8 - 841 cents. Thus, their inversions, the 17edo neutral thirds come very close to 16/13.<br />
<br />
The 17edo neutral 2nds, at 141 cents, fall between 13/12 (139 cents) &amp; 12/11 (151) cents. I've found that they generally function as 13/12, since they fall 3/2 away from 13/8. But you can discover these things for yourself, if you like, &amp; feel free to think of them in different ways entirely.<br />
<br />
Interestingly, the 7-note neutral scale does not allow you to build any minor or major triads whatsoever. You have only one minor 3rd, which occurs with a diminished 5th, but no perfect fifth, allowing you to build a diminished triad, but no minor triad. You have no major thirds at all. In JI-terms, you might say that it contains harmonies based on 2, 3, &amp; 13, while skipping 7 &amp; 11.<br />
<br />
17-tonists may find these scales helpful for escaping the familiar. Just because you <em>can</em> play diatonic music in 17edo, doesn't mean you have to. These neutral scales give you a more xenharmonic modal system to play with.<br />
<br />
If you continue stacking neutral thirds, you will soon come to a rather lovely 10-note neutral scale. I (or someone) will come back to that sooner or later.<br />
<br />
<br />
(Note that you will come up with similarly structured scales by using <em>other neutral thirds</em> as generators, although some of them will sound quite different. Some equal divisions of the octave containing neutral scales: <a class="wiki_link" href="/10edo">10edo</a>, <a class="wiki_link" href="/13edo">13edo</a>, <a class="wiki_link" href="/16edo">16edo</a>, <a class="wiki_link" href="/19edo">19edo</a>, <a class="wiki_link" href="/24edo">24edo</a>, <a class="wiki_link" href="/31edo">31edo</a>....)</body></html>