Edϕ

From Xenharmonic Wiki
Revision as of 00:04, 9 February 2020 by Cmloegcmluin (talk | contribs) (Cmloegcmluin moved page 7edφ to Edφ: learned more about this domain since when I first started writing this page this morning)
Jump to navigation Jump to search

Various equal divisions of the octave have close approximations of acoustic phi, or [math]\displaystyle{ φ }[/math], ≈833.090296357¢.

If the [math]\displaystyle{ m^{th} }[/math] step of [math]\displaystyle{ n }[/math]ed2 is a close approximation of [math]\displaystyle{ φ }[/math], the [math]\displaystyle{ n^{th} }[/math] step of [math]\displaystyle{ m }[/math]ed[math]\displaystyle{ φ }[/math] will be a close approximation of 2.

For example, the 7th step of 10ed2 is 840¢, and the 10th step of 7ed[math]\displaystyle{ φ }[/math] is ≈1190.128995¢. As another example, the 9th step of 13ed2 is ≈830.7692308¢, and the 13th step of 9ed[math]\displaystyle{ φ }[/math] is ≈1203.35265¢.

Such [math]\displaystyle{ m }[/math]ed[math]\displaystyle{ φ }[/math] are interesting as variants of their respective [math]\displaystyle{ n }[/math]ed[math]\displaystyle{ 2 }[/math], introducing some combination tone powers.

10ed2 7edφ or 10ed([math]\displaystyle{ 2^{\frac{10log_2{φ}}{7}} ≈ 1.988629015 }[/math])
scale step frequency multiplier (definition) 10ed2 frequency multiplier (decimal) pitch (¢) Δ (¢) frequency multiplier (definition) frequency multiplier (decimal) pitch (¢) Δ (¢)
1 [math]\displaystyle{ 2^{\frac{1}{10}} }[/math] 1.071773463 120 120 [math]\displaystyle{ φ^{\frac{1}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{1}{10}} }[/math] 1.071162542 119.0128995 119.0128995
2 [math]\displaystyle{ 2^{\frac{2}{10}} }[/math] 1.148698355 240 120 [math]\displaystyle{ φ^{\frac{2}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{2}{10}} }[/math] 1.147389191 238.025799 119.0128995
3 [math]\displaystyle{ 2^{\frac{3}{10}} }[/math] 1.231144413 360 120 [math]\displaystyle{ φ^{\frac{3}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{3}{10}} }[/math] 1.229040323 357.0386984 119.0128995
4 [math]\displaystyle{ 2^{\frac{4}{10}} }[/math] 1.319507911 480 120 [math]\displaystyle{ φ^{\frac{4}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{4}{10}} }[/math] 1.316501956 476.0515979 119.0128995
5 [math]\displaystyle{ 2^{\frac{5}{10}} }[/math] 1.414213562 600 120 [math]\displaystyle{ φ^{\frac{5}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{5}{10}} }[/math] 1.410187582 595.0644974 119.0128995
6 [math]\displaystyle{ 2^{\frac{6}{10}} }[/math] 1.515716567 720 120 [math]\displaystyle{ φ^{\frac{6}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{6}{10}} }[/math] 1.510540115 714.0773969 119.0128995
7 [math]\displaystyle{ 2^{\frac{7}{10}} }[/math] 1.624504793 840 120 [math]\displaystyle{ φ^{\frac{7}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{7}{10}} }[/math] 1.618033989 833.0902964 119.0128995
8 [math]\displaystyle{ 2^{\frac{8}{10}} }[/math] 1.741101127 960 120 [math]\displaystyle{ φ^{\frac{8}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{8}{10}} }[/math] 1.7331774 952.1031958 119.0128995
9 [math]\displaystyle{ 2^{\frac{9}{10}} }[/math] 1.866065983 1080 120 [math]\displaystyle{ φ^{\frac{9}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{9}{10}} }[/math] 1.85651471 1071.116095 119.0128995
10 [math]\displaystyle{ 2^{\frac{10}{10}} }[/math] 2 1200 120 [math]\displaystyle{ φ^{\frac{10}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{10}{10}} }[/math] 1.988629015 1190.128995 119.0128995