Edϕ
Various equal divisions of the octave have close approximations of acoustic phi, or [math]φ[/math], ≈833.090296357¢.
If the [math]m^{th}[/math] step of [math]n[/math]ed2 is a close approximation of [math]φ[/math], the [math]n^{th}[/math] step of [math]m[/math]ed[math]φ[/math] will be a close approximation of 2.
For example, the 7th step of 10ed2 is 840¢, and the 10th step of 7ed[math]φ[/math] is ≈1190.128995¢. As another example, the 9th step of 13ed2 is ≈830.7692308¢, and the 13th step of 9ed[math]φ[/math] is ≈1203.35265¢.
Such [math]m[/math]ed[math]φ[/math] are interesting as variants of their respective [math]n[/math]ed[math]2[/math], introducing some combination tone powers.
scale step | 10ed2 | 7edφ or 10ed([math]2^{\frac{10log_2{φ}}{7}} ≈ 1.988629015[/math]) | ||||||
frequency multiplier (definition) | 10ed2 frequency multiplier (decimal) | pitch (¢) | Δ (¢) | frequency multiplier (definition) | frequency multiplier (decimal) | pitch (¢) | Δ (¢) | |
1 | [math]2^{\frac{1}{10}}[/math] | 1.071773463 | 120 | 120 | [math]φ^{\frac{1}{7}}[/math] or [math]≈1.988629015^{\frac{1}{10}}[/math] | 1.071162542 | 119.0128995 | 119.0128995 |
2 | [math]2^{\frac{2}{10}}[/math] | 1.148698355 | 240 | 120 | [math]φ^{\frac{2}{7}}[/math] or [math]≈1.988629015^{\frac{2}{10}}[/math] | 1.147389191 | 238.025799 | 119.0128995 |
3 | [math]2^{\frac{3}{10}}[/math] | 1.231144413 | 360 | 120 | [math]φ^{\frac{3}{7}}[/math] or [math]≈1.988629015^{\frac{3}{10}}[/math] | 1.229040323 | 357.0386984 | 119.0128995 |
4 | [math]2^{\frac{4}{10}}[/math] | 1.319507911 | 480 | 120 | [math]φ^{\frac{4}{7}}[/math] or [math]≈1.988629015^{\frac{4}{10}}[/math] | 1.316501956 | 476.0515979 | 119.0128995 |
5 | [math]2^{\frac{5}{10}}[/math] | 1.414213562 | 600 | 120 | [math]φ^{\frac{5}{7}}[/math] or [math]≈1.988629015^{\frac{5}{10}}[/math] | 1.410187582 | 595.0644974 | 119.0128995 |
6 | [math]2^{\frac{6}{10}}[/math] | 1.515716567 | 720 | 120 | [math]φ^{\frac{6}{7}}[/math] or [math]≈1.988629015^{\frac{6}{10}}[/math] | 1.510540115 | 714.0773969 | 119.0128995 |
7 | [math]2^{\frac{7}{10}}[/math] | 1.624504793 | 840 | 120 | [math]φ^{\frac{7}{7}}[/math] or [math]≈1.988629015^{\frac{7}{10}}[/math] | 1.618033989 | 833.0902964 | 119.0128995 |
8 | [math]2^{\frac{8}{10}}[/math] | 1.741101127 | 960 | 120 | [math]φ^{\frac{8}{7}}[/math] or [math]≈1.988629015^{\frac{8}{10}}[/math] | 1.7331774 | 952.1031958 | 119.0128995 |
9 | [math]2^{\frac{9}{10}}[/math] | 1.866065983 | 1080 | 120 | [math]φ^{\frac{9}{7}}[/math] or [math]≈1.988629015^{\frac{9}{10}}[/math] | 1.85651471 | 1071.116095 | 119.0128995 |
10 | [math]2^{\frac{10}{10}}[/math] | 2 | 1200 | 120 | [math]φ^{\frac{10}{7}}[/math] or [math]≈1.988629015^{\frac{10}{10}}[/math] | 1.988629015 | 1190.128995 | 119.0128995 |
scale step | 13ed2 | 9edφ or 13ed([math]2^{\frac{13log_2{φ}}{9}} ≈ 2.003876886[/math]) | ||||||
frequency multiplier (definition) | 10ed2 frequency multiplier (decimal) | pitch (¢) | Δ (¢) | frequency multiplier (definition) | frequency multiplier (decimal) | pitch (¢) | Δ (¢) | |
1 | [math]2^{\frac{1}{13}}[/math] | 1.054766076 | 92.30769231 | 92.30769231 | [math]φ^{\frac{1}{9}}[/math] or [math]≈2.003876886^{\frac{1}{13}}[/math] | 1.054923213 | 92.56558848 | 92.56558848 |
2 | [math]2^{\frac{2}{13}}[/math] | 1.112531476 | 184.6153846 | 92.30769231 | [math]φ^{\frac{2}{9}}[/math] or [math]≈2.003876886^{\frac{2}{13}}[/math] | 1.112862986 | 185.131177 | 92.56558848 |
3 | [math]2^{\frac{3}{13}}[/math] | 1.17346046 | 276.9230769 | 92.30769231 | [math]φ^{\frac{3}{9}}[/math] or [math]≈2.003876886^{\frac{3}{13}}[/math] | 1.173984997 | 277.6967655 | 92.56558848 |
4 | [math]2^{\frac{4}{13}}[/math] | 1.237726285 | 369.2307692 | 92.30769231 | [math]φ^{\frac{4}{9}}[/math] or [math]≈2.003876886^{\frac{4}{13}}[/math] | 1.238464025 | 370.2623539 | 92.56558848 |
5 | [math]2^{\frac{5}{13}}[/math] | 1.305511698 | 461.5384615 | 92.30769231 | [math]φ^{\frac{5}{9}}[/math] or [math]≈2.003876886^{\frac{5}{13}}[/math] | 1.306484449 | 462.8279424 | 92.56558848 |
6 | [math]2^{\frac{6}{13}}[/math] | 1.377009451 | 553.8461538 | 92.30769231 | [math]φ^{\frac{6}{9}}[/math] or [math]≈2.003876886^{\frac{6}{13}}[/math] | 1.378240772 | 555.3935309 | 92.56558848 |
7 | [math]2^{\frac{7}{13}}[/math] | 1.452422856 | 646.1538462 | 92.30769231 | [math]φ^{\frac{7}{9}}[/math] or [math]≈2.003876886^{\frac{7}{13}}[/math] | 1.453938184 | 647.9591194 | 92.56558848 |
8 | [math]2^{\frac{8}{13}}[/math] | 1.531966357 | 738.4615385 | 92.30769231 | [math]φ^{\frac{8}{9}}[/math] or [math]≈2.003876886^{\frac{8}{13}}[/math] | 1.533793141 | 740.5247079 | 92.56558848 |
9 | [math]2^{\frac{9}{13}}[/math] | 1.615866144 | 830.7692308 | 92.30769231 | [math]φ^{\frac{9}{9}}[/math] or [math]≈2.003876886^{\frac{9}{13}}[/math] | 1.618033989 | 833.0902964 | 92.56558848 |
10 | [math]2^{\frac{10}{13}}[/math] | 1.704360793 | 923.0769231 | 92.30769231 | [math]φ^{\frac{10}{9}}[/math] or [math]≈2.003876886^{\frac{10}{13}}[/math] | 1.706901614 | 925.6558848 | 92.56558848 |
11 | [math]2^{\frac{11}{13}}[/math] | 1.797701946 | 1015.384615 | 92.30769231 | [math]φ^{\frac{11}{9}}[/math] or [math]≈2.003876886^{\frac{11}{13}}[/math] | 1.800650136 | 1018.221473 | 92.56558848 |
12 | [math]2^{\frac{12}{13}}[/math] | 1.896155029 | 1107.692308 | 92.30769231 | [math]φ^{\frac{12}{9}}[/math] or [math]≈2.003876886^{\frac{12}{13}}[/math] | 1.899547627 | 1110.787062 | 92.56558848 |
13 | [math]2^{\frac{13}{13}}[/math] | 2 | 1200 | 92.30769231 | [math]φ^{\frac{13}{9}}[/math] or [math]≈2.003876886^{\frac{13}{13}}[/math] | 2.003876886 | 1203.35265 | 92.56558848 |
A couple such scales can be found in the Huygens-Fokker Foundation's Scala scale archive. They were described by Walter O'Connell in his 1993 paper The Tonality of the Golden Section. The 18th root of φ scale doubles the resolution of the 9th root scale featured above, as so as the 9th root of φ scale is similar to 13ed2 the 18th root of φ scale is similar to 26edo (which does a notably better job of approximating 3-, 5-, and 7- limit harmonies).
cet33.scl 25 25th root of phi, Walter O´Connell (1993) cet46.scl 18 18th root of phi, Walter O´Connell (1993)