List of 3-limit factorizations

From Xenharmonic Wiki
Revision as of 03:22, 15 January 2019 by Spt3125 (talk | contribs) (Created page with "This list includes prime factorizations and monzos of all numbers from 1 to 999999 which are divisible by 3, and not divisible by any larger prime number. {| class="w...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This list includes prime factorizations and monzos of all numbers from 1 to 999999 which are divisible by 3, and not divisible by any larger prime number.

integer factorization monzo
3 3 [0 1
6 2⋅3 [1 1
9 3⋅3 [0 2
12 2⋅2⋅3 [2 1
18 2⋅3⋅3 [1 2
24 2⋅2⋅2⋅3 [3 1
27 3⋅3⋅3 [0 3
36 2⋅2⋅3⋅3 [2 2
48 2⋅2⋅2⋅2⋅3 [4 1
54 2⋅3⋅3⋅3 [1 3
72 2⋅2⋅2⋅3⋅3 [3 2
81 3⋅3⋅3⋅3 [0 4
96 2⋅2⋅2⋅2⋅2⋅3 [5 1
108 2⋅2⋅3⋅3⋅3 [2 3
144 2⋅2⋅2⋅2⋅3⋅3 [4 2
162 2⋅3⋅3⋅3⋅3 [1 4
192 2⋅2⋅2⋅2⋅2⋅2⋅3 [6 1
216 2⋅2⋅2⋅3⋅3⋅3 [3 3
243 3⋅3⋅3⋅3⋅3 [0 5
288 2⋅2⋅2⋅2⋅2⋅3⋅3 [5 2
324 2⋅2⋅3⋅3⋅3⋅3 [2 4
384 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [7 1
432 2⋅2⋅2⋅2⋅3⋅3⋅3 [4 3
486 2⋅3⋅3⋅3⋅3⋅3 [1 5
576 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [6 2
648 2⋅2⋅2⋅3⋅3⋅3⋅3 [3 4
729 3⋅3⋅3⋅3⋅3⋅3 [0 6
768 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [8 1
864 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [5 3
972 2⋅2⋅3⋅3⋅3⋅3⋅3 [2 5
1152 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [7 2
1296 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [4 4
1458 2⋅3⋅3⋅3⋅3⋅3⋅3 [1 6
1536 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [9 1
1728 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [6 3
1944 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [3 5
2187 3⋅3⋅3⋅3⋅3⋅3⋅3 [0 7
2304 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [8 2
2592 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [5 4
2916 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [2 6
3072 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [10 1
3456 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [7 3
3888 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [4 5
4374 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 7
4608 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [9 2
5184 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [6 4
5832 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [3 6
6144 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [11 1
6561 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [0 8
6912 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [8 3
7776 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [5 5
8748 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [2 7
9216 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [10 2
10368 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [7 4
11664 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [4 6
12288 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [12 1
13122 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 8
13824 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [9 3
15552 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [6 5
17496 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [3 7
18432 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [11 2
19683 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [0 9
20736 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [8 4
23328 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [5 6
24576 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [13 1
26244 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [2 8
27648 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [10 3
31104 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [7 5
34992 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [4 7
36864 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [12 2
39366 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 9
41472 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [9 4
46656 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [6 6
49152 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [14 1
52488 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [3 8
55296 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [11 3
59049 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [0 10
62208 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [8 5
69984 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [5 7
73728 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [13 2
78732 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [2 9
82944 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [10 4
93312 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [7 6
98304 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [15 1
104976 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [4 8
110592 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [12 3
118098 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 10
124416 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [9 5
139968 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [6 7
147456 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [14 2
157464 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [3 9
165888 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [11 4
177147 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [0 11
186624 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [8 6
196608 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [16 1
209952 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [5 8
221184 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [13 3
236196 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [2 10
248832 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [10 5
279936 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [7 7
294912 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [15 2
314928 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [4 9
331776 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [12 4
354294 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 11
373248 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [9 6
393216 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [17 1
419904 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [6 8
442368 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [14 3
472392 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [3 10
497664 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [11 5
531441 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [0 12
559872 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [8 7
589824 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [16 2
629856 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [5 9
663552 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [13 4
708588 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [2 11
746496 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [10 6
786432 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [18 1
839808 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [7 8
884736 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [15 3
944784 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [4 10
995328 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [12 5