Proposed names for rank-2 temperaments
Here is a list of some names that have been proposed for rank 2 temperaments. The name or names of the temperament is followed by the generator mapping, which represents the number of periods and generators of the temperament for each of the prime intervals (2 3 5 etc.)
See also pergen names.
One period per octave
- father [<1 2 2], <0 -1 1]>
- mother [<1 2 2 2], <0 -1 1 2]>
- father [<1 2 2 4], <0 -1 1 -3]>
- mavila [<1 2 1], <0 -1 3]>
- pelogic [<1 2 1 1], <0 -1 3 4]>
- armodue [<1 2 1 5], <0 -1 3 -5]>
- mavila [<1 2 1 -2], <0 -1 3 11]>
- hornbostel [<1 2 1 8], <0 -1 3 -12]>
- meantone [<1 2 4], <0 -1 -4]>
- dominant [<1 2 4 2], <0 -1 -4 2]>
- arnold [<1 2 4 2 3], <0 -1 -4 2 1]>
- dominant [<1 2 4 2 1], <0 -1 -4 2 6]>
- domineering [<1 2 4 2 6], <0 -1 -4 2 -6]>
- dominatrix [<1 2 4 2 6 5], <0 -1 -4 2 -6 -3]>
- sharptone [<1 2 4 4], <0 -1 -4 -3]>
- meanertone [<1 2 4 4 3], <0 -1 -4 -3 1]>
- flattone [<1 2 4 -1], <0 -1 -4 9]>
- flattone [<1 2 4 -1 6], <0 -1 -4 9 -6]>
- meantone [<1 2 4 7], <0 -1 -4 -10]>
- meanenneadecal [<1 2 4 7 6], <0 -1 -4 -10 -6]>
- meanpop [<1 2 4 7 -2], <0 -1 -4 -10 13]>
- meantone [<1 2 4 7 11], <0 -1 -4 -10 -18]>
- dominant [<1 2 4 2], <0 -1 -4 2]>
- helmholtz [<1 2 -1], <0 -1 8]>
- schism [<1 2 -1 2], <0 -1 8 2]>
- garibaldi [<1 2 -1 -3], <0 -1 8 14]>
- garibaldi [<1 2 -1 -3 13], <0 -1 8 14 -23]>
- garibaldi [<1 2 -1 -3 13 12], <0 -1 8 14 -23 -20]>
- cassandra [<1 2 -1 -3 -4], <0 -1 8 14 18]>
- cassandra [<1 2 -1 -3 -4 -5], <0 -1 8 14 18 21]>
- garibaldi [<1 2 -1 -3 13], <0 -1 8 14 -23]>
- grackle [<1 2 -1 -8], <0 -1 8 26]>
- pontiac, infraschismic [<1 2 -1 19], <0 -1 8 -39]>
- superpyth [<1 2 6], <0 -1 -9]>
- superpyth [<1 2 6 2], <0 -1 -9 2]>
- superpyth [<1 2 6 2 10], <0 -1 -9 2 -16]>
- suprapyth [<1 2 6 2 1], <0 -1 -9 2 6]>
- superpyth [<1 2 6 2], <0 -1 -9 2]>
- quasisuper [<1 2 -3 2], <0 -1 13 2]>
- leapday [<1 2 11 9 8 7], <0 -1 -21 -15 -11 -8]>
- kwai [<1 2 16 14], <0 -1 -33 -27]>
- kwai [<1 2 16 14 -4], <0 -1 -33 -27 18]>
- undecental [<1 2 -13 -15], <0 -1 37 43]>
- counterschismic [<1 2 21], <0 -1 -45]>
- dicot [<1 1 2], <0 2 1]>
- dicot [<1 1 2 2], <0 2 1 3]>
- sharp [<1 1 2 1], <0 2 1 6]>
- mohajira, semififths [<1 1 0 6], <0 2 8 -11]>
- mohajira <1 1 0 6 2], <0 2 8 -11 5]>
- maqamic [<1 1 0 4 2], <0 2 8 -4 5]>
- maqamic <1 1 0 4 2 4], <0 2 8 -4 5 -1]>
- beatles [<1 1 5 4], <0 2 -9 -4]>
- karadeniz [<1 1 7 11 2], <0 2 -16 -28 5]>
- hemififths [<1 1 -5 -1], <0 2 25 13]>
- bug [<1 2 3], <0 -2 -3]>
- beep [<1 2 3 3], <0 -2 -3 -1]>
- pentoid [<1 2 3 3 3], <0 -2 -3 -1 2]>
- beep [<1 2 3 3], <0 -2 -3 -1]>
- superpelog [<1 2 1 3], <0 -2 6 -1]>
- godzilla [<1 2 4 3], <0 -2 -8 -1]>
- monzismic [<1 2 10], <0 -2 -37]>
- gidorah [<1 1 2 3], <0 3 2 -1]>
- penta [<1 1 2 2], <0 3 2 4]>
- laconic [<1 1 1], <0 3 7]>
- gorgo [<1 1 1 3], <0 3 7 -1]
- gorgo [<1 1 1 3 1| <0 3 7 -1 13|>
- gorgo [<1 1 1 3 1 2| <0 3 7 -1 13 9|>
- spartan [<1 1 1 3 5| <0 3 7 -1 -8|>
- gorgo [<1 1 1 3 1| <0 3 7 -1 13|>
- gorgo [<1 1 1 3], <0 3 7 -1]
- mothra, cynder [<1 1 0 3], <0 3 12 -1]>
- mothra, cynder [<1 1 0 3 5], <0 3 12 -1 -8]>
- rodan [<1 1 -1 3], <0 3 17 -1]>
- rodan[<1 1 -1 3 6], <0 3 17 -1 -13]>
- rodan [<1 1 -1 3 6 8], <0 3 17 -1 -13 -22]>
- aerodactyl [<1 1 -1 3 6 -1], <0 3 17 -1 -13 24]>
- rodan[<1 1 -1 3 6], <0 3 17 -1 -13]>
- guiron [<1 1 7 3], <0 3 -24 -1]>
- porcupine [<1 2 3], <0 -3 -5]>
- hystrix [<1 2 3 3], <0 -3 -5 -1]>
- porcupine [<1 2 3 2], <0 -3 -5 6]>
- porcupine [<1 2 3 2 4], <0 -3 -5 6 -4]>
- opossum, pentadecimal [<1 2 3 4], <0 -3 -5 -9]>
- opossum [<1 2 3 4 4], <0 -3 -5 -9 -4]>
- coendou [<1 2 3 1 4 3], <0 -3 -5 13 -4 5]>
- porcupinefish [<1 2 3 2 4 6], <0 -3 -5 6 -4 -17]>
- ammonite [<1 5 8 10], <0 -9 -15 -19]>
- triton [<1 3 -1 -1], <0 -3 7 8]>
- liese, gawel [<1 3 8 8], <0 -3 -12 -11]>
- tricot [<1 3 16], <0 -3 -29]>
- tetracot [<1 1 1], <0 4 9]>
- monkey [<1 1 1 5], <0 4 9 -15]>
- bunya [<1 1 1 -1], <0 4 9 26]>
- vulture [<1 0 -6], <0 4 21]>
- buzzard [<1 0 -6 4], <0 4 21 -3]>
- buzzard [<1 0 -6 4 -12 -7], <0 4 21 -3 39 27]>
- buzzard [<1 0 -6 4], <0 4 21 -3]>
- sesquiquartififths [<1 1 7 5], <0 4 -32 -15]>
- semihemififths [<1 1 -5 -1 8], <0 4 50 26 -31]>
- sidi [<1 3 3 6], <0 -4 -2 -9]>
- negri [<1 2 2], <0 -4 3]>
- negri [<1 2 2 3], <0 -4 3 -2]>
- negri [<1 2 2 3 4| <0 -4 3 -2 -5|]
- negri [<1 2 2 3 4 4| <0 -4 3 -2 -5 -3|]
- negril [<1 2 2 3 2| <0 -4 3 -2 14|]
- negril [<1 2 2 3 2 4], <0 -4 3 -2 14 -3]>
- negri [<1 2 2 3 4| <0 -4 3 -2 -5|]
- negri [<1 2 2 3], <0 -4 3 -2]>
- sentinel [<1 3 -3 6], <0 -4 15 -9]>
- squares [<1 3 8 6], <0 -4 -16 -9]>
- magic [<1 0 2], <0 5 1]>
- muggles [<1 0 2 5], <0 5 1 -7]>
- magic [<1 0 2 -1], <0 5 1 12]>
- magic [<1 0 2 -1 6], <0 5 1 12 -8]>
- passion [<1 2 2], <0 -5 4]>
- passion [<1 2 2 2], <0 -5 4 10]>
- ripple [<1 2 3], <0 -5 -8]>
- ripple [<1 2 3 3], <0 -5 -8 -2]>
- tritonic [<1 4 -3 -3], <0 -5 11 12]>
- tritonic [<1 4 -3 -3 2], <0 -5 11 12 3]>
- amity [<1 3 6], <0 -5 -13]>
- amity [<1 3 6 -2], <0 -5 -13 17]>
- hitchcock, amity [<1 3 6 -2 6], <0 -5 -13 17 -9]>
- hitchcock [<1 3 6 -2 6 2], <0 -5 -13 17 -9 6]>
- hitchcock, amity [<1 3 6 -2 6], <0 -5 -13 17 -9]>
- amity [<1 3 6 -2], <0 -5 -13 17]>
- gravity [<1 5 12], <0 -6 -17]>
- hanson [<1 0 1], <0 6 5]>
- keemun [<1 0 1 2], <0 6 5 3]>
- keemun [<1 0 1 2 4], <0 6 5 3 -2]>
- catakleismic [<1 0 1 -3], <0 6 5 22]>
- catakleismic [<1 0 1 -3 9], <0 6 5 22 -21]>
- catakleismic [<1 0 1 -3 9 0], <0 6 5 22 -21 14]>
- catakleismic [<1 0 1 -3 9], <0 6 5 22 -21]>
- countercata [<1 0 1 11], <0 6 5 -31]>
- keemun [<1 0 1 2], <0 6 5 3]>
- ampersand [<1 1 3], <0 6 -7]>
- miracle[<1 1 3 3], <0 6 -7 -2]>
- miracle [<1 1 3 3 2], <0 6 -7 -2 15]>
- miracle[<1 1 3 3], <0 6 -7 -2]>
- marvo [<1 -1 -5 -17], <0 6 17 46]>
- nautilus [<1 2 3 3], <0 -6 -10 -3]>
- orson [<1 0 3], <0 7 -3]>
- orwell [<1 0 3 1], <0 7 -3 8]>
- orwell [<1 0 3 1 3], <0 7 -3 8 2]>
- orwell [<1 0 3 1 3 8], <0 7 -3 8 2 -19]>
- blair [<1 0 3 1 3 3], <0 7 -3 8 2 3]>
- winston [<1 0 3 1 3 1], <0 7 -3 8 2 12]>
- doublethink [<1 0 3 1 3 2], <0 14 -6 16 4 15]>
- orwell [<1 0 3 1 3], <0 7 -3 8 2]>
- orwell [<1 0 3 1], <0 7 -3 8]>
- sensi [<1 -1 -1], <0 7 9]>
- sensis [<1 6 8 11 6| <0 -7 -9 -13 -4|] ?
- sensis [<1 6 8 11 6 10| <0 -7 -9 -13 -4 -10|] ?
- sensus [<1 6 8 11 23| <0 -7 -9 -13 -31|] ?
- sensus [<1 6 8 11 23 10| <0 -7 -9 -13 -31 -10|] ?
- roman [<1 4 3 -1 0 3], <0 -7 -2 11 10 2]>
- octacot [<1 1 1 2], <0 8 18 11]>
- würschmidt [<1 -1 2], <0 8 1]>
- worschmidt [<1 -1 2 7], <0 8 1 -13]>
- wurschmidt [<1 -1 2 -3], <0 8 1 18]>
- whirrschmidt [<1 7 3 38], <0 -8 -1 -52]>
- valentine [<1 1 2], <0 9 5]>
- valentine[<1 1 2 3], <0 9 5 -3]>
- valentine [<1 1 2 3 3], <0 9 5 -3 7]>
- valentino [<1 1 2 3 3 5], <0 9 5 -3 7 -20]>
- dwynwen [<1 1 2 3 3 2], <0 9 5 -3 7 26]>
- lupercalia [<1 1 2 3 3 3| <0 9 5 -3 7 11|]
- valentine [<1 1 2 3 3], <0 9 5 -3 7]>
- valentine[<1 1 2 3], <0 9 5 -3]>
- escapade [<1 2 2], <0 -9 7]>
- escapade [<1 2 2 3], <0 -9 7 -4]>
- escaped [<1 2 2 4], <0 -9 7 -26]>
- superkleismic [<1 4 5 2], <0 -9 -10 3]>
- superkleismic [<1 4 5 2 4], <0 -9 -10 3 -2]>
- myna [<1 -1 0 1], <0 10 9 7]>
- myna [<1 -1 0 1 -3], <0 10 9 7 25]>
- myna [<1 -1 0 1 -3 5], <0 10 9 7 25 -5]>
- myna [<1 -1 0 1 -3], <0 10 9 7 25]>
- sycamore [<1 1 2], <0 11 6]>
- sycamore [<1 1 2 2], <0 11 6 15]>
- septimin [<1 4 1 5], <0 -11 6 -10]>
- nusecond [<1 3 4 5], <0 -11 -13 -17]>
- quartonic [<1 2 3 3], <0 -11 -18 -5]>
- hemikleismic [<1 0 1 4], <0 12 10 -9]>
- clyde [<1 6 6 12], <0 -12 -10 -25]>
- bohpier [<1 0 0 0], <0 13 19 23]>
- gammic [<1 1 2], <0 20 11]>
- gammic [<1 1 2 0], <0 20 11 96]>
- neptune [<1 21 13 13], <0 -40 -22 -21]>
- pluto [<1 5 15 15 2], <0 7 26 25 -3]>
- twothirdtonic [<1 3 2 4 4], <0 -13 3 -11 -5]>
- twothirdtonic [<1 3 2 4 4 5], <0 -13 3 -11 -5 -12]>
- slender [<1 2 2 3], <0 -13 10 -6]>
- slender [<1 2 2 3 4], <0 -13 10 -6 -17]>
- parakleismic [<1 5 6], <0 -13 -14]>
- parakleismic [<1 5 6 12], <0 -13 -14 -35]>
- fortune [<1 -1 11], <0 14 -47]>
- hemithirds, luna [<1 4 2], <0 -15 2]>
- hemithirds[<1 4 2 2], <0 -15 2 5]>
- hemithirds [<1 4 2 2 7], <0 -15 2 5 -22]>
- hemithirds[<1 4 2 2], <0 -15 2 5]>
- hemiwürschmidt [<1 -1 2 2], <0 16 2 5]>
- hemiwürschmidt [<1 -1 2 2 -3], <0 16 2 5 40]>
- semisept [<1 -5 0 -3], <0 17 6 15]>
- vavoom [<1 0 4], <0 17 -18]>
- minortone [<1 -1 -3], <0 17 35]>
- mitonic [<1 -1 -3 6], <0 17 35 -21]>
- casablanca [<1 -7 -4 1], <0 19 14 4]>
- casablanca [<1 -7 -4 1 3], <0 19 14 4 1]>
- tertiaseptal [<1 3 2 3], <0 -22 5 -3]>
- grendel, voodoo [<1 9 2 7], <0 -23 1 -13]>
- gamera [<1 6 10 3], <0 -23 -40 -1]>
- astro [<1 5 1], <0 -31 12]>
- semihemiwürschmidt [<1 15 4 7 24], <0 -32 -4 -10 -49]>
- whoosh [<1 17 14], <0 -33 -25]>
- yarman [<1 2 3 4 4], <0 -33 -54 -95 -43]>
- senior [<1 11 19], <0 -35 -62]>
- raider [<1 -9 -26], <0 37 99]>
- supermajor [<1 15 19 30], <0 -37 -46 -75]>
- quasiorwell [<1 -7 3 1], <0 38 -3 8]>
- semigamera [<1 6 10 3 12], <0 -46 -80 -2 -89]>
- gross [<1 -2 4], <0 47 -22]>
- pirate [<1 -6 0], <0 49 15]>
- egads [<1 15 16], <0 -51 -52]>
- avila [<1 1 -1], <0 1 6]>
- mabila [<1 6 1], <0 -10 3]>
- pycnic [<1 3 -1 8], <0 -3 7 -11]>
- enipucrop [<1 2 2], <0 -3 2]>
Two periods per octave
- srutal [<2 3 5], <0 1 -2]>
- pajara [<2 3 5 6], <0 1 -2 -2]>
- pajaric [<2 3 5 6 7], <0 1 -2 -2 0]>
- pajarous [<2 3 5 6 6], <0 1 -2 -2 5]>
- pajara [<2 3 5 6 8], <0 1 -2 -2 -6]>
- diaschismic [<2 3 5 7], <0 1 -2 -8]>
- diaschismic [<2 3 5 7 9 10], <0 1 -2 -8 -12 -15]>
- keen [<2 3 5 4], <0 1 -2 9]>
- pajara [<2 3 5 6], <0 1 -2 -2]>
- supersharp [<2 3 4], <0 1 3]>
- octokaidecal [<2 3 4 5], <0 1 3 3]>
- bipelog [<2 3 5 6], <0 1 -3 -3]>
- injera [<2 3 4 5], <0 1 4 4]>
- injera [<2 3 4 5 6], <0 1 4 4 6]>
- bischismic [<2 3 6 9], <0 1 -8 -20]>
- shrutar [<2 3 5 5], <0 2 -4 7]>
- shrutar [<2 3 5 5 7], <0 2 -4 7 -1]>
- srutar [<2 3 5 5 7 8], <0 2 -4 7 -1 -7]>
- shrutar [<2 3 5 5 7 6], <0 2 -4 7 -1 16]>
- shrutar [<2 3 5 5 7], <0 2 -4 7 -1]>
- echidna [<2 1 9 2], <0 3 -6 5]>
- echidna [<2 1 9 2 12], <0 3 -6 5 -7]>
- decimal [<2 4 5 6], <0 -2 -1 -1]>
- semihemi [<2 4 15 11 21], <0 -2 -25 -13 -34]>
- lemba [<2 2 5 6], <0 3 -1 -1]>
- hedgehog [<2 4 6 7], <0 -3 -5 -5]>
- doublewide [<2 5 6], <0 -4 -3]>
- doublewide[<2 5 6 7], <0 -4 -3 -3]>
- doublewide [<2 5 6 7 6], <0 -4 -3 -3 2]>
- doublewide[<2 5 6 7], <0 -4 -3 -3]>
- sesquiquartififths [<2 2 14 10], <0 4 -32 -15]>
- hemiamity [<2 1 -1 13 13], <0 5 13 -17 -14]>
- wizard [<2 1 5 2], <0 6 -1 10]>
- wizard [<2 1 5 2 8], <0 6 -1 10 -3]>
- unidec [<2 5 8 5], <0 -6 -11 2]>
- unidec [<2 5 8 5 6], <0 -6 -11 2 3]>
- hendec [<2 5 8 5 6 8], <0 -6 -11 2 3 -2]>
- unidec [<2 5 8 5 6], <0 -6 -11 2 3]>
- harry [<2 4 7 7], <0 -6 -17 -10]>
- vishnu [<2 4 5], <0 -7 -3]>
- vishnu [<2 4 5 10], <0 -7 -3 -37]>
- kwazy [<2 1 6], <0 8 -5]>
- bisupermajor [<2 1 6 1 8], <0 8 -5 17 -4]>
- semiparakleismic [<2 -3 -2 -11 -4], <0 13 14 35 23]>
- hemigamera [<2 12 20 6], <0 -23 -40 -1]>
- hemigamera [<2 12 20 6 5], <0 -23 -40 -1 5]>
- abigail [<2 7 13 -1 1 -2], <0 -11 -24 19 17 27]>
Three periods per octave
- augmented [<3 5 7], <0 -1 0]>
- augene, tripletone [<3 5 7 8], <0 -1 0 2]>
- augene, tripletone [<3 5 7 8 10], <0 -1 0 2 2]>
- august [<3 5 7 9], <0 -1 0 -2]>
- augene, tripletone [<3 5 7 8], <0 -1 0 2]>
- misty [<3 5 6], <0 -1 4]>
- misty [<3 5 6 6], <0 -1 4 10]>
- term [<3 5 5 4], <0 -1 8 18]>
- semiaug [<3 5 7 9], <0 -2 0 -5]>
- tritikleismic [<3 6 8 8], <0 -6 -5 2]>
- mutt [<3 5 7 8], <0 -7 -1 12]>
- ternary [<3 5 7 8], <3 5 7 9]>
Four or more periods per octave
- diminished [<4 6 9], <0 1 1]>
- diminished [<4 6 9 11], <0 1 1 1]>
- diminished [<4 6 9 11 14], <0 1 1 1 0]>
- demolished [<4 6 9 11 13], <0 1 1 1 3]>
- diminished [<4 6 9 11], <0 1 1 1]>
- blackwood [<5 8 12], <0 0 -1]>
- blacksmith [<5 8 12 14], <0 0 -1 0]>
- hexe [<6 10 14 17], <0 -1 0 0]>
- jamesbond [<7 11 16 20], <0 0 0 -1]>
- jamesbond [<7 11 16 20 24], <0 0 0 -1 0]>
- whitewood [<7 11 16], <0 0 1]>
- octoid [<8 13 19 23 28], <0 -3 -4 -5 -3]>
- ennealimmal [<9 15 22], <0 -2 -3]>
- ennealimmal [<9 15 22 26], <0 -2 -3 -2]>
- ennealimmal [<9 15 22 26 37], <0 -2 -3 -2 -16]>
- ennealimmal [<9 15 22 26], <0 -2 -3 -2]>
- decoid [<10 0 47 36| <0 2 -3 -1|]
- decoid [<10 0 47 36 98| <0 2 -3 -1 -8|]
- decoid [<10 0 47 36 98 37| <0 2 -3 -1 -8 0|]
- decoid [<10 0 47 36 98| <0 2 -3 -1 -8|]
- hendecatonic [<11 17 26 30], <0 1 -1 2]>
- catler [<12 19 28 34], <0 0 0 -1]>
- compton [<12 19 28], <0 0 -1]>
- compton, waage [<12 19 28 34], <0 0 -1 -2]>
- compton, duodecimal [<12 19 28 34 42], <0 0 -1 -2 -3]>
- compton, waage [<12 19 28 34], <0 0 -1 -2]>
- duodecim [<12 19 28 34 42], <0 0 0 0 -1]>
- atomic [<12 19 28], <0 1 -7]>
- hemiennealimmal [<18 28 41 50 62], <0 2 3 2 1]>
- enneadecal [<19 30 44], <0 1 1]>
- enneadecal [<19 30 44 53], <0 1 1 3]>
- undevigintone [<19 30 44 53 66], <0 0 0 0 -1]>
- icosidillic [<22 35 51 62 76], <0 -1 1 -2 1]>
- vigintiduo [<22 35 51 62 76], <0 0 0 0 1]>
- mystery [<29 46 67 81 100 107], <0 0 1 1 1 1]>
- hemienneadecal [<38 60 88 106 131], <0 1 1 3 2]>