List of edo-distinct 22et rank two temperaments
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2012-04-26 16:26:17 UTC.
- The original revision id was 325708372.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
The temperaments listed are 22edo-distinct, meaning that they are all different even if tuned in 22edo. The ordering is by increasing complexity of 3. The temperament of lowest TE complexity was chosen as the representative for each class of edo-distinctness. =5-limit temperaments= || Rank || Wedgie || Name || Complexity || Commas || || 1 || <<1 9 12]] || Superpyth || 2.947 || 20480/19683 || || 2 || <<2 -4 -11]] || Srutal || 2.121 || 2048/2025 || || 3 || <<3 5 1]] || Porcupine || 1.663 || 250/243 || || 4 || <<4 14 13]] || Comic || 4.290 || 5120000/4782969 || || 5 || <<5 1 -10]] || Magic || 2.417 || 3072/3125 || || 6 || <<16 -10 -53]] || Kwazy || 10.454 || 9010162353515625/9007199254740992 || || 7 || <<7 -3 -21]] || Orson || 4.232 || 2109375/2097152 || || 8 || <<8 6 -9]] || Doublewide || 3.565 || 390625/373248 || || 9 || <<13 7 -19]] || Chromo || 5.860 || 1220703125/1146617856 || || 10 || <<12 -2 -31]] || Wizard || 6.558 || 2197265625/2147483648 || || 11 || <<11 11 -8]] || Undeka || 5.011 || 48828125/45349632 || =7-limit temperaments= || Rank || Wedgie || Name || Complexity || Commas || || 1 || <<1 9 -2 12 -6 -30]] || Superpyth || 2.874 || 64/63 245/243 || || 2 || <<2 -4 -4 -11 -12 2]] || Pajara || 1.953 || 50/49 64/63 || || 3 || <<3 5 -6 1 -18 -28]] || Porcupine || 2.819 || 64/63 250/243 || || 4 || <<4 14 14 13 11 -7]] || Comic || 3.815 || 50/49 2240/2187 || || 5 || <<5 1 12 -10 5 25]] || Magic || 2.937 || 225/224 245/243 || || 6 || <<6 10 10 2 -1 -5]] || Hedgehog || 2.784 || 50/49 245/243 || || 7 || <<7 -3 8 -21 -7 27]] || Orwell || 3.685 || 225/224 1728/1715 || || 8 || <<8 6 6 -9 -13 -3]] || Doublewide || 2.928 || 50/49 875/864 || || 9 || <<9 15 4 3 -19 -33]] || Ceratitid || 4.482 || 250/243 1728/1715 || || 10 || <<10 2 2 -20 -25 -1]] || Astrology || 4.127 || 50/49 3125/3072 || || 11 || <<11 11 0 -8 -31 -31]] || Undeka || 4.941 || 875/864 3200/3087 || =11-limit temperaments= || Rank || Wedgie || Name || Complexity || Commas || || 1 || <<1 9 -2 -6 12 -6 -13 -30 -45 -10]] || Suprapyth || 3.011 || 55/54 64/63 99/98 || || 2 || <<2 -4 -4 -12 -11 -12 -26 2 -14 -20]] || Pajara || 2.543 || 50/49 64/63 99/98 || || 3 || <<3 5 -6 4 1 -18 -4 -28 -8 32]] || Porcupine || 2.478 || 55/54 64/63 100/99 || || 4 || <<4 -8 -8 -2 -22 -24 -17 4 23 22]] || Hemipaj || 3.389 || 50/49 64/63 121/120 || || 5 || <<5 1 12 14 -10 5 5 25 29 -2]] || Telepathy || 2.864 || 55/54 99/98 176/175 || || 6 || <<6 10 10 8 2 -1 -8 -5 -16 -12]] || Hedgehog || 2.439 || 50/49 55/54 99/98 || || 7 || <<7 -3 8 2 -21 -7 -21 27 15 -22]] || Orwell || 3.242 || 99/98 121/120 176/175 || || 8 || <<8 6 6 18 -9 -13 1 -3 21 30]] || Fleetwood || 3.081 || 50/49 55/54 176/175 || || 9 || <<9 15 4 12 3 -19 -12 -33 -24 20]] || Ceratitid || 3.880 || 55/54 100/99 5324/5145 || || 10 || <<10 2 2 6 -20 -25 -25 -1 7 10]] || Astrology || 3.575 || 50/49 121/120 176/175 || || 11 || <<11 11 0 0 -8 -31 -38 -31 -38 0]] || Undeka || 4.657 || 100/99 352/343 385/384 || =13-limit temperaments= || Rank || Wedgie || Name || Complexity || Commas || || 1 || <<1 9 -2 -6 -9 12 -6 -13 -18 -30 -45 -54 -10 -18 -9]] || Suprapyth || 3.151 || 55/54 64/63 65/63 364/363 || || 2 || <<2 -4 -4 10 4 -11 -12 9 -1 2 37 24 42 26 -23]] || Pajarous || 2.481 || 50/49 55/54 64/63 65/63 || || 3 || <<3 5 -6 4 -5 1 -18 -4 -19 -28 -8 -30 32 8 -32]] || Porkpie || 2.487 || 55/54 64/63 65/63 100/99 || || 4 || <<4 14 14 20 8 13 11 18 -2 -7 -2 -33 8 -29 -46]] || Comic || 3.391 || 50/49 65/63 99/98 968/945 || || 5 || <<5 1 12 14 -1 -10 5 5 -20 25 29 -6 -2 -47 -55]] || Telepathy || 2.980 || 55/54 65/64 91/90 99/98 || || 6 || <<6 10 10 8 12 2 -1 -8 -3 -5 -16 -9 -12 -3 12]] || Hedgehog || 2.196 || 50/49 55/54 65/63 99/98 || || 7 || <<7 -3 8 2 3 -21 -7 -21 -21 27 15 18 -22 -21 3]] || Blair || 2.911 || 65/64 78/77 91/90 99/98 || || 8 || <<8 6 6 18 16 -9 -13 1 -4 -3 21 15 30 23 -11]] || Fleetwood || 2.861 || 50/49 55/54 65/63 176/175 || || 9 || <<9 15 4 12 7 3 -19 -12 -22 -33 -24 -39 20 5 -20]] || Ceratitid || 3.573 || 55/54 65/63 100/99 352/343 || || 10 || <<10 2 2 6 -2 -20 -25 -25 -40 -1 7 -12 10 -13 -29]] || || 3.495 || 50/49 65/64 78/77 121/120 || || 11 || <<11 11 0 0 11 -8 -31 -38 -23 -31 -38 -15 0 31 38]] || Undeka || 4.178 || 65/63 100/99 169/165 352/343 ||
Original HTML content:
<html><head><title>List of edo-distinct 22et rank two temperaments</title></head><body>The temperaments listed are 22edo-distinct, meaning that they are all different even if tuned in 22edo. The ordering is by increasing complexity of 3. The temperament of lowest TE complexity was chosen as the representative for each class of edo-distinctness.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x5-limit temperaments"></a><!-- ws:end:WikiTextHeadingRule:0 -->5-limit temperaments</h1> <table class="wiki_table"> <tr> <td>Rank<br /> </td> <td>Wedgie<br /> </td> <td>Name<br /> </td> <td>Complexity<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td>1<br /> </td> <td><<1 9 12]]<br /> </td> <td>Superpyth<br /> </td> <td>2.947<br /> </td> <td>20480/19683<br /> </td> </tr> <tr> <td>2<br /> </td> <td><<2 -4 -11]]<br /> </td> <td>Srutal<br /> </td> <td>2.121<br /> </td> <td>2048/2025<br /> </td> </tr> <tr> <td>3<br /> </td> <td><<3 5 1]]<br /> </td> <td>Porcupine<br /> </td> <td>1.663<br /> </td> <td>250/243<br /> </td> </tr> <tr> <td>4<br /> </td> <td><<4 14 13]]<br /> </td> <td>Comic<br /> </td> <td>4.290<br /> </td> <td>5120000/4782969<br /> </td> </tr> <tr> <td>5<br /> </td> <td><<5 1 -10]]<br /> </td> <td>Magic<br /> </td> <td>2.417<br /> </td> <td>3072/3125<br /> </td> </tr> <tr> <td>6<br /> </td> <td><<16 -10 -53]]<br /> </td> <td>Kwazy<br /> </td> <td>10.454<br /> </td> <td>9010162353515625/9007199254740992<br /> </td> </tr> <tr> <td>7<br /> </td> <td><<7 -3 -21]]<br /> </td> <td>Orson<br /> </td> <td>4.232<br /> </td> <td>2109375/2097152<br /> </td> </tr> <tr> <td>8<br /> </td> <td><<8 6 -9]]<br /> </td> <td>Doublewide<br /> </td> <td>3.565<br /> </td> <td>390625/373248<br /> </td> </tr> <tr> <td>9<br /> </td> <td><<13 7 -19]]<br /> </td> <td>Chromo<br /> </td> <td>5.860<br /> </td> <td>1220703125/1146617856<br /> </td> </tr> <tr> <td>10<br /> </td> <td><<12 -2 -31]]<br /> </td> <td>Wizard<br /> </td> <td>6.558<br /> </td> <td>2197265625/2147483648<br /> </td> </tr> <tr> <td>11<br /> </td> <td><<11 11 -8]]<br /> </td> <td>Undeka<br /> </td> <td>5.011<br /> </td> <td>48828125/45349632<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="x7-limit temperaments"></a><!-- ws:end:WikiTextHeadingRule:2 -->7-limit temperaments</h1> <table class="wiki_table"> <tr> <td>Rank<br /> </td> <td>Wedgie<br /> </td> <td>Name<br /> </td> <td>Complexity<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td>1<br /> </td> <td><<1 9 -2 12 -6 -30]]<br /> </td> <td>Superpyth<br /> </td> <td>2.874<br /> </td> <td>64/63 245/243<br /> </td> </tr> <tr> <td>2<br /> </td> <td><<2 -4 -4 -11 -12 2]]<br /> </td> <td>Pajara<br /> </td> <td>1.953<br /> </td> <td>50/49 64/63<br /> </td> </tr> <tr> <td>3<br /> </td> <td><<3 5 -6 1 -18 -28]]<br /> </td> <td>Porcupine<br /> </td> <td>2.819<br /> </td> <td>64/63 250/243<br /> </td> </tr> <tr> <td>4<br /> </td> <td><<4 14 14 13 11 -7]]<br /> </td> <td>Comic<br /> </td> <td>3.815<br /> </td> <td>50/49 2240/2187<br /> </td> </tr> <tr> <td>5<br /> </td> <td><<5 1 12 -10 5 25]]<br /> </td> <td>Magic<br /> </td> <td>2.937<br /> </td> <td>225/224 245/243<br /> </td> </tr> <tr> <td>6<br /> </td> <td><<6 10 10 2 -1 -5]]<br /> </td> <td>Hedgehog<br /> </td> <td>2.784<br /> </td> <td>50/49 245/243<br /> </td> </tr> <tr> <td>7<br /> </td> <td><<7 -3 8 -21 -7 27]]<br /> </td> <td>Orwell<br /> </td> <td>3.685<br /> </td> <td>225/224 1728/1715<br /> </td> </tr> <tr> <td>8<br /> </td> <td><<8 6 6 -9 -13 -3]]<br /> </td> <td>Doublewide<br /> </td> <td>2.928<br /> </td> <td>50/49 875/864<br /> </td> </tr> <tr> <td>9<br /> </td> <td><<9 15 4 3 -19 -33]]<br /> </td> <td>Ceratitid<br /> </td> <td>4.482<br /> </td> <td>250/243 1728/1715<br /> </td> </tr> <tr> <td>10<br /> </td> <td><<10 2 2 -20 -25 -1]]<br /> </td> <td>Astrology<br /> </td> <td>4.127<br /> </td> <td>50/49 3125/3072<br /> </td> </tr> <tr> <td>11<br /> </td> <td><<11 11 0 -8 -31 -31]]<br /> </td> <td>Undeka<br /> </td> <td>4.941<br /> </td> <td>875/864 3200/3087<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="x11-limit temperaments"></a><!-- ws:end:WikiTextHeadingRule:4 -->11-limit temperaments</h1> <table class="wiki_table"> <tr> <td>Rank<br /> </td> <td>Wedgie<br /> </td> <td>Name<br /> </td> <td>Complexity<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td>1<br /> </td> <td><<1 9 -2 -6 12 -6 -13 -30 -45 -10]]<br /> </td> <td>Suprapyth<br /> </td> <td>3.011<br /> </td> <td>55/54 64/63 99/98<br /> </td> </tr> <tr> <td>2<br /> </td> <td><<2 -4 -4 -12 -11 -12 -26 2 -14 -20]]<br /> </td> <td>Pajara<br /> </td> <td>2.543<br /> </td> <td>50/49 64/63 99/98<br /> </td> </tr> <tr> <td>3<br /> </td> <td><<3 5 -6 4 1 -18 -4 -28 -8 32]]<br /> </td> <td>Porcupine<br /> </td> <td>2.478<br /> </td> <td>55/54 64/63 100/99<br /> </td> </tr> <tr> <td>4<br /> </td> <td><<4 -8 -8 -2 -22 -24 -17 4 23 22]]<br /> </td> <td>Hemipaj<br /> </td> <td>3.389<br /> </td> <td>50/49 64/63 121/120<br /> </td> </tr> <tr> <td>5<br /> </td> <td><<5 1 12 14 -10 5 5 25 29 -2]]<br /> </td> <td>Telepathy<br /> </td> <td>2.864<br /> </td> <td>55/54 99/98 176/175<br /> </td> </tr> <tr> <td>6<br /> </td> <td><<6 10 10 8 2 -1 -8 -5 -16 -12]]<br /> </td> <td>Hedgehog<br /> </td> <td>2.439<br /> </td> <td>50/49 55/54 99/98<br /> </td> </tr> <tr> <td>7<br /> </td> <td><<7 -3 8 2 -21 -7 -21 27 15 -22]]<br /> </td> <td>Orwell<br /> </td> <td>3.242<br /> </td> <td>99/98 121/120 176/175<br /> </td> </tr> <tr> <td>8<br /> </td> <td><<8 6 6 18 -9 -13 1 -3 21 30]]<br /> </td> <td>Fleetwood<br /> </td> <td>3.081<br /> </td> <td>50/49 55/54 176/175<br /> </td> </tr> <tr> <td>9<br /> </td> <td><<9 15 4 12 3 -19 -12 -33 -24 20]]<br /> </td> <td>Ceratitid<br /> </td> <td>3.880<br /> </td> <td>55/54 100/99 5324/5145<br /> </td> </tr> <tr> <td>10<br /> </td> <td><<10 2 2 6 -20 -25 -25 -1 7 10]]<br /> </td> <td>Astrology<br /> </td> <td>3.575<br /> </td> <td>50/49 121/120 176/175<br /> </td> </tr> <tr> <td>11<br /> </td> <td><<11 11 0 0 -8 -31 -38 -31 -38 0]]<br /> </td> <td>Undeka<br /> </td> <td>4.657<br /> </td> <td>100/99 352/343 385/384<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="x13-limit temperaments"></a><!-- ws:end:WikiTextHeadingRule:6 -->13-limit temperaments</h1> <table class="wiki_table"> <tr> <td>Rank<br /> </td> <td>Wedgie<br /> </td> <td>Name<br /> </td> <td>Complexity<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td>1<br /> </td> <td><<1 9 -2 -6 -9 12 -6 -13 -18 -30 -45 -54 -10 -18 -9]]<br /> </td> <td>Suprapyth<br /> </td> <td>3.151<br /> </td> <td>55/54 64/63 65/63 364/363<br /> </td> </tr> <tr> <td>2<br /> </td> <td><<2 -4 -4 10 4 -11 -12 9 -1 2 37 24 42 26 -23]]<br /> </td> <td>Pajarous<br /> </td> <td>2.481<br /> </td> <td>50/49 55/54 64/63 65/63<br /> </td> </tr> <tr> <td>3<br /> </td> <td><<3 5 -6 4 -5 1 -18 -4 -19 -28 -8 -30 32 8 -32]]<br /> </td> <td>Porkpie<br /> </td> <td>2.487<br /> </td> <td>55/54 64/63 65/63 100/99<br /> </td> </tr> <tr> <td>4<br /> </td> <td><<4 14 14 20 8 13 11 18 -2 -7 -2 -33 8 -29 -46]]<br /> </td> <td>Comic<br /> </td> <td>3.391<br /> </td> <td>50/49 65/63 99/98 968/945<br /> </td> </tr> <tr> <td>5<br /> </td> <td><<5 1 12 14 -1 -10 5 5 -20 25 29 -6 -2 -47 -55]]<br /> </td> <td>Telepathy<br /> </td> <td>2.980<br /> </td> <td>55/54 65/64 91/90 99/98<br /> </td> </tr> <tr> <td>6<br /> </td> <td><<6 10 10 8 12 2 -1 -8 -3 -5 -16 -9 -12 -3 12]]<br /> </td> <td>Hedgehog<br /> </td> <td>2.196<br /> </td> <td>50/49 55/54 65/63 99/98<br /> </td> </tr> <tr> <td>7<br /> </td> <td><<7 -3 8 2 3 -21 -7 -21 -21 27 15 18 -22 -21 3]]<br /> </td> <td>Blair<br /> </td> <td>2.911<br /> </td> <td>65/64 78/77 91/90 99/98<br /> </td> </tr> <tr> <td>8<br /> </td> <td><<8 6 6 18 16 -9 -13 1 -4 -3 21 15 30 23 -11]]<br /> </td> <td>Fleetwood<br /> </td> <td>2.861<br /> </td> <td>50/49 55/54 65/63 176/175<br /> </td> </tr> <tr> <td>9<br /> </td> <td><<9 15 4 12 7 3 -19 -12 -22 -33 -24 -39 20 5 -20]]<br /> </td> <td>Ceratitid<br /> </td> <td>3.573<br /> </td> <td>55/54 65/63 100/99 352/343<br /> </td> </tr> <tr> <td>10<br /> </td> <td><<10 2 2 6 -2 -20 -25 -25 -40 -1 7 -12 10 -13 -29]]<br /> </td> <td><br /> </td> <td>3.495<br /> </td> <td>50/49 65/64 78/77 121/120<br /> </td> </tr> <tr> <td>11<br /> </td> <td><<11 11 0 0 11 -8 -31 -38 -23 -31 -38 -15 0 31 38]]<br /> </td> <td>Undeka<br /> </td> <td>4.178<br /> </td> <td>65/63 100/99 169/165 352/343<br /> </td> </tr> </table> </body></html>