Lumatone mapping for 41edo

Revision as of 12:31, 17 March 2025 by ArrowHead294 (talk | contribs)

There are many conceivable ways to map 41edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.

2
9
5
12
19
26
33
1
8
15
22
29
36
2
9
4
11
18
25
32
39
5
12
19
26
33
0
7
14
21
28
35
1
8
15
22
29
36
2
9
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
9
2
9
16
23
30
37
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
9
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
38
4
11
18
25
32
39
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
38
25
32
39
5
12
19
26
33
40
6
13
20
27
34
8
15
22
29
36
2
9
16
23
30
37
25
32
39
5
12
19
26
33
8
15
22
29
36
25
32


The magic mapping is particularly efficient at putting good intervals close to each other and dissonant ones far away, as demonstrated in more detail in the writings on the kite guitar.

21
23
32
34
36
38
40
0
2
4
6
8
10
12
14
11
13
15
17
19
21
23
25
27
29
31
20
22
24
26
28
30
32
34
36
38
40
1
3
5
31
33
35
37
39
0
2
4
6
8
10
12
14
16
18
20
22
40
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
1
3
5
7
9
11
13
19
21
23
25
27
29
31
33
35
37
39
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
32
34
36
38
40
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
1
3
5
7
9
11
13
15
23
25
27
29
31
33
35
37
39
0
2
4
6
8
10
12
14
16
18
20
22
24
26
38
40
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
14
16
18
20
22
24
26
28
30
32
34
36
38
40
1
3
5
29
31
33
35
37
39
0
2
4
6
8
10
12
14
5
7
9
11
13
15
17
19
21
23
25
20
22
24
26
28
30
32
34
37
39
0
2
4
11
13


The tetracot mapping also puts consonant intervals within easy reach, but the 7L 6s MOS has a 5:1 step ratio, making it somewhat lopsided.

29
35
34
40
5
11
17
33
39
4
10
16
22
28
34
38
3
9
15
21
27
33
39
4
10
16
37
2
8
14
20
26
32
38
3
9
15
21
27
33
1
7
13
19
25
31
37
2
8
14
20
26
32
38
3
9
15
0
6
12
18
24
30
36
1
7
13
19
25
31
37
2
8
14
20
26
32
5
11
17
23
29
35
0
6
12
18
24
30
36
1
7
13
19
25
31
37
2
8
14
4
10
16
22
28
34
40
5
11
17
23
29
35
0
6
12
18
24
30
36
1
7
13
19
25
31
15
21
27
33
39
4
10
16
22
28
34
40
5
11
17
23
29
35
0
6
12
18
24
30
36
1
7
13
32
38
3
9
15
21
27
33
39
4
10
16
22
28
34
40
5
11
17
23
29
35
0
6
12
18
14
20
26
32
38
3
9
15
21
27
33
39
4
10
16
22
28
34
40
5
11
17
23
31
37
2
8
14
20
26
32
38
3
9
15
21
27
33
39
4
10
16
22
13
19
25
31
37
2
8
14
20
26
32
38
3
9
15
21
27
30
36
1
7
13
19
25
31
37
2
8
14
20
26
12
18
24
30
36
1
7
13
19
25
31
29
35
0
6
12
18
24
30
11
17
23
29
35
28
34


If you want to maximise your range while having access to all notes in each octave, the compressed rodan mapping is about as good as you can get.

17
25
24
32
40
7
15
23
31
39
6
14
22
30
38
30
38
5
13
21
29
37
4
12
20
28
29
37
4
12
20
28
36
3
11
19
27
35
2
10
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
23
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
13
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
13
21
29
37
4
12
20
28
36
15
23
31
39
6
14
22
30
38
5
13
21
29
37
4
12
20
28
36
3
11
19
27
35
2
10
18
26
38
5
13
21
29
37
4
12
20
28
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
28
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
23
31
39
6
14
22
30
38
5
13
21
29
37
4
13
21
29
37
4
12
20
28
36
3
11
36
3
11
19
27
35
2
10
26
34
1
9
17
8
16


However, this puts octaves all over the place. The expanded rodan or baldy mappings still have a wider range than the standard one and are more ergonomic for play.

18
26
19
27
35
2
10
12
20
28
36
3
11
19
27
13
21
29
37
4
12
20
28
36
3
11
6
14
22
30
38
5
13
21
29
37
4
12
20
28
7
15
23
31
39
6
14
22
30
38
5
13
21
29
37
4
12
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
13
21
29
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
13
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
6
14
20
28
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
4
12
20
28
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
8
16
21
29
37
4
12
20
28
36
3
11
19
27
35
2
10
18
26
34
1
9
5
13
21
29
37
4
12
20
28
36
3
11
19
27
35
2
10
22
30
38
5
13
21
29
37
4
12
20
28
36
3
6
14
22
30
38
5
13
21
29
37
4
23
31
39
6
14
22
30
38
7
15
23
31
39
24
32


26
33
32
39
5
12
19
31
38
4
11
18
25
32
39
37
3
10
17
24
31
38
4
11
18
25
36
2
9
16
23
30
37
3
10
17
24
31
38
4
1
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
0
7
14
21
28
35
1
8
15
22
29
36
2
9
16
23
30
37
3
10
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
9
16
23
30
37
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
9
16
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
24
31
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
30
37
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
9
16
23
30
37
3
10
17
24
31
38
4
11
18
36
2
9
16
23
30
37
3
10
17
24
15
22
29
36
2
9
16
23
1
8
15
22
29
21
28


ViewTalkEditLumatone mappings 
38edo39edo40edoLumatone mapping for 41edo42edo43edo44edo