Lumatone mapping for 84edo
There are many conceivable ways to map 84edo onto the onto the Lumatone keyboard. However, it has 7 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them. Due to the edos size, it would not cover the whole gamut even if it was. Neither the second, third, nor fourth-best fifths work either, and the maviloid scale generated by 47/84 is even flatter than 25edo.

36
46
53
63
73
83
9
60
70
80
6
16
26
36
46
77
3
13
23
33
43
53
63
73
83
9
0
10
20
30
40
50
60
70
80
6
16
26
36
46
17
27
37
47
57
67
77
3
13
23
33
43
53
63
73
83
9
24
34
44
54
64
74
0
10
20
30
40
50
60
70
80
6
16
26
36
46
41
51
61
71
81
7
17
27
37
47
57
67
77
3
13
23
33
43
53
63
73
83
9
48
58
68
78
4
14
24
34
44
54
64
74
0
10
20
30
40
50
60
70
80
6
16
26
36
46
75
1
11
21
31
41
51
61
71
81
7
17
27
37
47
57
67
77
3
13
23
33
43
53
63
73
83
9
28
38
48
58
68
78
4
14
24
34
44
54
64
74
0
10
20
30
40
50
60
70
80
6
16
26
75
1
11
21
31
41
51
61
71
81
7
17
27
37
47
57
67
77
3
13
23
33
43
28
38
48
58
68
78
4
14
24
34
44
54
64
74
0
10
20
30
40
50
75
1
11
21
31
41
51
61
71
81
7
17
27
37
47
57
67
28
38
48
58
68
78
4
14
24
34
44
54
64
74
75
1
11
21
31
41
51
61
71
81
7
28
38
48
58
68
78
4
14
75
1
11
21
31
28
38
Instead, the most efficient layout that allows access to all notes is the Sensei mapping, although this does reduce the range to a little over three octaves.

2
11
6
15
24
33
42
1
10
19
28
37
46
55
64
5
14
23
32
41
50
59
68
77
2
11
0
9
18
27
36
45
54
63
72
81
6
15
24
33
4
13
22
31
40
49
58
67
76
1
10
19
28
37
46
55
64
83
8
17
26
35
44
53
62
71
80
5
14
23
32
41
50
59
68
77
2
3
12
21
30
39
48
57
66
75
0
9
18
27
36
45
54
63
72
81
6
15
24
33
82
7
16
25
34
43
52
61
70
79
4
13
22
31
40
49
58
67
76
1
10
19
28
37
46
55
11
20
29
38
47
56
65
74
83
8
17
26
35
44
53
62
71
80
5
14
23
32
41
50
59
68
77
2
33
42
51
60
69
78
3
12
21
30
39
48
57
66
75
0
9
18
27
36
45
54
63
72
81
6
64
73
82
7
16
25
34
43
52
61
70
79
4
13
22
31
40
49
58
67
76
1
10
2
11
20
29
38
47
56
65
74
83
8
17
26
35
44
53
62
71
80
5
33
42
51
60
69
78
3
12
21
30
39
48
57
66
75
0
9
55
64
73
82
7
16
25
34
43
52
61
70
79
4
2
11
20
29
38
47
56
65
74
83
8
24
33
42
51
60
69
78
3
55
64
73
82
7
77
2
The Orwell mapping has a smaller range, but is closer to the optimal tuning for the temperament and makes it easier to play harmonics together.

4
12
7
15
23
31
39
2
10
18
26
34
42
50
58
5
13
21
29
37
45
53
61
69
77
1
0
8
16
24
32
40
48
56
64
72
80
4
12
20
3
11
19
27
35
43
51
59
67
75
83
7
15
23
31
39
47
82
6
14
22
30
38
46
54
62
70
78
2
10
18
26
34
42
50
58
66
1
9
17
25
33
41
49
57
65
73
81
5
13
21
29
37
45
53
61
69
77
1
9
80
4
12
20
28
36
44
52
60
68
76
0
8
16
24
32
40
48
56
64
72
80
4
12
20
28
7
15
23
31
39
47
55
63
71
79
3
11
19
27
35
43
51
59
67
75
83
7
15
23
31
39
47
55
26
34
42
50
58
66
74
82
6
14
22
30
38
46
54
62
70
78
2
10
18
26
34
42
50
58
53
61
69
77
1
9
17
25
33
41
49
57
65
73
81
5
13
21
29
37
45
53
61
72
80
4
12
20
28
36
44
52
60
68
76
0
8
16
24
32
40
48
56
15
23
31
39
47
55
63
71
79
3
11
19
27
35
43
51
59
34
42
50
58
66
74
82
6
14
22
30
38
46
54
61
69
77
1
9
17
25
33
41
49
57
80
4
12
20
28
36
44
52
23
31
39
47
55
42
50