List of 22et rank two temperaments by badness

From Xenharmonic Wiki
Revision as of 22:46, 21 April 2012 by Wikispaces>phylingual (**Imported revision 323761106 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author phylingual and made on 2012-04-21 22:46:12 UTC.
The original revision id was 323761106.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Below are listed rank-two temperaments supported by the [[22edo]] patent val, below the indicated cutoff in TE badness.

=5-limit temperaments with badness below 0.1= 
Listed is the wedgie and the TE badness times 1000 for six temperaments with badness less than 0.1.
|| Rank || Wedgie || Name || Badness || Commas ||
|| 1 || <<16 -10 -53]] || Kwazy || 14.091 || 9010162353515625/9007199254740992 ||
|| 2 || <<2 -4 -11]] || Srutal || 19.915 || 2048/2025 ||
|| 3 || <<3 5 1]] || Porcupine || 30.778 || 250/243 ||
|| 4 || <<5 1 -10]] || Magic || 39.163 || 3125/3072 ||
|| 5 || <<7 -3 -21]] || Orson || 40.807 || 2109375/2097152 ||
|| 6 || <<9 -7 -32]] || Escapade || 83.778 || 4294967296/4271484375 ||

=7-limit temperaments with badness below 0.06= 
Listed is the wedgie and the TE badness times 1000 for 14 temperaments with badness less than 0.06.
|| Rank || Wedgie || Name || Badness || Commas ||
|| 1 || <<5 1 12 -10 5 25]] || Magic || 18.918 || 225/224 245/243 ||
|| 2 || <<2 -4 -4 -11 -12 2]] || Pajara || 20.033 || 50/49 64/63 ||
|| 3 || <<7 -3 8 -21 -7 27]] || Orwell || 20.735 || 225/224 1728/1715 ||
|| 4 || <<23 -13 42 -74 2 134]] || Fifthplus || 25.840 || 65625/65536 420175/419904 ||
|| 5 || <<1 9 -2 12 -6 -30]] || Superpyth || 32.318 || 64/63 245/243 ||
|| 6 || <<12 -2 20 -31 -2 52]] || Wizard || 40.846 || 225/224 118098/117649 ||
|| 7 || <<3 5 -6 1 -18 -28]] || Porcupine || 41.057 || 64/63 250/243 ||
|| 8 || <<11 -11 22 -43 4 82]] || Hendecatonic || 41.081 || 6144/6125 10976/10935 ||
|| 9 || <<8 6 6 -9 -13 -3]] || Doublewide || 43.462 || 50/49 875/864 ||
|| 10 || <<6 10 10 2 -1 -5]] || Hedgehog || 43.983 || 50/49 245/243 ||
|| 11 || <<4 -8 14 -22 11 55]] || Shrutar || 47.377 || 245/243 2048/2025 ||
|| 12 || <<3 5 16 1 17 23]] || Porky || 54.389 || 225/224 250/243 ||
|| 13 || <<6 -12 10 -33 -1 57]] || Echidna || 58.033 || 1728/1715 2048/2025 ||
|| 14 || <<18 -14 30 -64 -3 109]] || Septisuperfourth || 59.241 || 6144/6125 118098/117649 ||

=11-limit temperaments with badness below 0.05= 
Listed is the wedgie and the TE badness times 1000 for 38 temperaments with badness less than 0.05.
|| Rank || Wedgie || Name || Badness || Commas ||
|| 1 || <<7 -3 8 2 -21 -7 -21 27 15 -22]] || Orwell || 15.231 || 99/98 121/120 176/175 ||
|| 2 || <<12 -2 20 -6 -31 -2 -51 52 -7 -86]] || Wizard || 18.539 || 225/224 385/384 4000/3993 ||
|| 3 || <<2 -4 -4 -12 -11 -12 -26 2 -14 -20]] || Pajara || 20.343 || 50/49 64/63 99/98 ||
|| 4 || <<5 1 12 -8 -10 5 -30 25 -22 -64]] || Magic || 20.352 || 100/99 225/224 245/243 ||
|| 5 || <<3 5 -6 4 1 -18 -4 -28 -8 32]] || Porcupine || 21.562 || 55/54 64/63 100/99 ||
|| 6 || <<6 10 10 8 2 -1 -8 -5 -16 -12]] || Hedgehog || 23.095 || 50/49 55/54 99/98 ||
|| 7 || <<18 -14 30 -20 -64 -3 -94 109 2 -160]] || Septisuperfourth || 24.619 || 540/539 4000/3993 5632/5625 ||
|| 8 || <<1 9 -2 16 12 -6 22 -30 6 52]] || Superpyth || 24.976 || 64/63 100/99 245/243 ||
|| 9 || <<6 -12 10 -14 -33 -1 -43 57 9 -74]] || Echidna || 25.987 || 176/175 540/539 896/891 ||
|| 10 || <<4 -8 14 -2 -22 11 -17 55 23 -54]] || Shrutar || 26.489 || 121/120 176/175 245/243 ||
|| 11 || <<5 1 12 14 -10 5 5 25 29 -2]] || Telepathy || 27.109 || 55/54 99/98 176/175 ||
|| 12 || <<3 5 16 4 1 17 -4 23 -8 -44]] || Porky || 27.268 || 55/54 100/99 225/224 ||
|| 13 || <<46 -26 84 -34 -148 4 -213 268 11 -386]] ||   || 27.785 || 9801/9800 41503/41472 65625/65536 ||
|| 14 || <<2 -4 -4 10 -11 -12 9 2 37 42]] || Pajarous || 28.349 || 50/49 55/54 64/63 ||
|| 15 || <<34 -24 64 -28 -117 6 -162 216 18 -300]] ||   || 28.943 || 5632/5625 9801/9800 41503/41472 ||
|| 16 || <<8 6 6 -4 -9 -13 -34 -3 -30 -32]] || Doublewide || 32.058 || 50/49 99/98 875/864 ||
|| 17 || <<16 -10 34 -8 -53 9 -68 107 16 -140]] || Bisupermajor || 32.080 || 385/384 3388/3375 9801/9800 ||
|| 18 || <<1 -13 -2 -6 -23 -6 -13 32 31 -10]] || Quasisupra || 32.203 || 64/63 99/98 121/120 ||
|| 19 || <<1 9 -2 -6 12 -6 -13 -30 -45 -10]] || Suprapyth || 32.768 || 55/54 64/63 99/98 ||
|| 20 || <<8 6 6 18 -9 -13 1 -3 21 30]] || Fleetwood || 35.202 || 50/49 55/54 176/175 ||
|| 21 || <<9 -7 26 -10 -32 16 -47 80 1 -118]] || Sensa || 35.844 || 245/243 385/384 4000/3993 ||
|| 22 || <<10 2 24 6 -20 10 -25 50 7 -66]] || Divination || 35.864 || 121/120 225/224 245/243 ||
|| 23 || <<9 -7 4 -10 -32 -19 -47 29 1 -42]] ||   || 36.700 || 99/98 176/175 2560/2541 ||
|| 24 || <<11 -11 22 -22 -43 4 -73 82 -13 -138]] ||   || 38.042 || 540/539 896/891 4375/4356 ||
|| 25 || <<4 -8 -8 -2 -22 -24 -17 4 23 22]] ||   || 38.890 || 50/49 64/63 121/120 ||
|| 26 || <<10 2 2 6 -20 -25 -25 -1 7 10]] ||   || 39.151 || 50/49 121/120 176/175 ||
|| 27 || <<19 -5 28 -4 -52 -9 -72 79 8 -108]] ||   || 40.603 || 225/224 385/384 43923/43750 ||
|| 28 || <<13 7 18 10 -19 -8 -29 22 -1 -34]] ||   || 41.282 || 99/98 121/120 625/616 ||
|| 29 || <<30 -16 50 -26 -95 -5 -145 161 -5 -246]] ||   || 42.972 || 540/539 4000/3993 65625/65536 ||
|| 30 || <<13 -15 18 -12 -54 -8 -64 84 24 -96]] ||   || 43.309 || 176/175 540/539 16384/16335 ||
|| 31 || <<4 14 14 20 13 11 18 -7 -2 8]] ||   || 45.052 || 50/49 99/98 2662/2625 ||
|| 32 || <<2 -4 18 -12 -11 23 -26 53 -14 -96]] ||   || 45.270 || 100/99 385/384 1232/1215 ||
|| 33 || <<7 -3 8 -20 -21 -7 -56 27 -36 -84]] ||   || 45.950 || 100/99 225/224 1728/1715 ||
|| 34 || <<11 -11 22 0 -43 4 -38 82 38 -76]] ||   || 46.088 || 121/120 176/175 10976/10935 ||
|| 35 || <<5 1 -10 -8 -10 -30 -30 -26 -22 12]] ||   || 47.379 || 64/63 100/99 605/588 ||
|| 36 || <<28 -12 54 -14 -84 7 -119 159 9 -226]] ||   || 47.776 || 385/384 9801/9800 456533/455625 ||
|| 37 || <<0 0 0 22 0 0 35 0 51 62]] ||   || 48.372 || 50/49 64/63 245/243 ||
|| 38 || <<25 -17 38 -18 -85 -10 -115 136 17 -182]] ||   || 49.466 || 540/539 5632/5625 35937/35840 ||

=13-limit temperaments with badness below 0.04= 
Listed is the wedgie and the TE badness times 1000 for 40 temperaments with badness less than 0.04.
|| Rank || Wedgie || Name || Badness || Commas ||
|| 1 || <<7 -3 8 2 -19 -21 -7 -21 -56 27 15 -33 -22 -83 -73]] || Orwell || 19.718 || 99/98 121/120 176/175 275/273 ||
|| 2 || <<6 10 10 8 12 2 -1 -8 -3 -5 -16 -9 -12 -3 12]] || Hedgehog || 21.516 || 50/49 55/54 65/63 99/98 ||
|| 3 || <<12 -2 20 -6 -20 -31 -2 -51 -76 52 -7 -39 -86 -130 -47]] || Lizard || 21.781 || 225/224 351/350 364/363 385/384 ||
|| 4 || <<2 -4 -4 -12 -18 -11 -12 -26 -36 2 -14 -27 -20 -36 -18]] || Pajara || 22.327 || 50/49 64/63 99/98 975/968 ||
|| 5 || <<7 -3 8 2 3 -21 -7 -21 -21 27 15 18 -22 -21 3]] || Blair || 23.086 || 65/64 78/77 91/90 99/98 ||
|| 6 || <<6 -12 10 -14 -32 -33 -1 -43 -73 57 9 -30 -74 -127 -59]] || Echidna || 23.679 || 176/175 351/350 364/363 540/539 ||
|| 7 || <<1 9 -2 16 13 12 -6 22 17 -30 6 -3 52 44 -14]] || Superpyth || 24.673 || 64/63 78/77 91/90 100/99 ||
|| 8 || <<2 -4 -4 10 4 -11 -12 9 -1 2 37 24 42 26 -23]] || Pajarous || 25.176 || 50/49 55/54 64/63 65/63 ||
|| 9 || <<5 1 12 -8 -23 -10 5 -30 -55 25 -22 -57 -64 -109 -50]] || Necromancy || 25.275 || 100/99 225/224 245/243 275/273 ||
|| 10 || <<3 5 -6 4 17 1 -18 -4 16 -28 -8 21 32 70 44]] || Porcupinefish || 25.314 || 55/54 64/63 91/90 100/99 ||
|| 11 || <<5 1 12 14 -1 -10 5 5 -20 25 29 -6 -2 -47 -55]] || Telepathy || 25.522 || 55/54 65/64 91/90 99/98 ||
|| 12 || <<5 1 12 -8 -1 -10 5 -30 -20 25 -22 -6 -64 -47 26]] || Sorcery || 25.829 || 65/64 78/77 91/90 100/99 ||
|| 13 || <<3 5 -6 4 -5 1 -18 -4 -19 -28 -8 -30 32 8 -32]] || Porkpie || 26.043 || 55/54 64/63 65/63 100/99 ||
|| 14 || <<4 -8 14 -2 -14 -22 11 -17 -37 55 23 -3 -54 -91 -41]] || Srutar || 26.069 || 91/90 121/120 176/175 245/243 ||
|| 15 || <<3 5 16 4 -5 1 17 -4 -19 23 -8 -30 -44 -73 -32]] ||   || 26.543 || 55/54 65/64 91/90 100/99 ||
|| 16 || <<2 -4 -4 -12 4 -11 -12 -26 -1 2 -14 24 -20 26 58]] ||   || 27.642 || 50/49 64/63 65/63 99/98 ||
|| 17 || <<8 6 6 -4 -6 -9 -13 -34 -39 -3 -30 -36 -32 -39 -6]] ||   || 29.481 || 50/49 78/77 99/98 875/864 ||
|| 18 || <<0 0 0 0 22 0 0 0 35 0 0 51 0 62 76]] ||   || 29.849 || 50/49 55/54 64/63 99/98 ||
|| 19 || <<1 -13 -2 -6 -9 -23 -6 -13 -18 32 31 27 -10 -18 -9]] ||   || 30.219 || 64/63 78/77 91/90 121/120 ||
|| 20 || <<9 -7 26 -10 -37 -32 16 -47 -92 80 1 -60 -118 -200 -91]] ||   || 31.366 || 245/243 352/351 385/384 625/624 ||
|| 21 || <<8 6 6 18 16 -9 -13 1 -4 -3 21 15 30 23 -11]] ||   || 31.835 || 50/49 55/54 65/63 176/175 ||
|| 22 || <<1 9 -2 -6 13 12 -6 -13 17 -30 -45 -3 -10 44 67]] ||   || 32.306 || 55/54 64/63 91/90 99/98 ||
|| 23 || <<18 -14 30 -20 -52 -64 -3 -94 -149 109 2 -69 -160 -257 -106]] ||   || 33.038 || 351/350 364/363 540/539 4096/4095 ||
|| 24 || <<16 -10 34 -8 -56 -53 9 -68 -148 107 16 -93 -140 -283 -164]] ||   || 33.800 || 352/351 385/384 625/624 4459/4455 ||
|| 25 || <<19 -5 28 -4 -39 -52 -9 -72 -132 79 8 -72 -108 -213 -120]] ||   || 34.251 || 225/224 351/350 385/384 10648/10647 ||
|| 26 || <<10 2 2 6 -2 -20 -25 -25 -40 -1 7 -12 10 -13 -29]] ||   || 34.376 || 50/49 65/64 78/77 121/120 ||
|| 27 || <<3 5 16 4 17 1 17 -4 16 23 -8 21 -44 -11 44]] ||   || 35.176 || 55/54 65/63 100/99 225/224 ||
|| 28 || <<9 -7 4 -10 -15 -32 -19 -47 -57 29 1 -9 -42 -57 -15]] ||   || 35.261 || 78/77 99/98 176/175 507/500 ||
|| 29 || <<4 -8 -8 -2 -14 -22 -24 -17 -37 4 23 -3 22 -10 -41]] ||   || 35.651 || 50/49 64/63 78/77 121/120 ||
|| 30 || <<1 9 -2 16 35 12 -6 22 52 -30 6 48 52 106 62]] ||   || 35.982 || 64/63 100/99 245/243 275/273 ||
|| 31 || <<11 -11 22 -22 -55 -43 4 -73 -128 82 -13 -87 -138 -236 -109]] ||   || 36.112 || 352/351 364/363 540/539 625/624 ||
|| 32 || <<1 9 -2 -6 -9 12 -6 -13 -18 -30 -45 -54 -10 -18 -9]] ||   || 36.336 || 55/54 64/63 65/63 364/363 ||
|| 33 || <<6 10 10 8 -10 2 -1 -8 -38 -5 -16 -60 -12 -65 -64]] ||   || 36.358 || 50/49 55/54 99/98 975/968 ||
|| 34 || <<10 2 24 6 -2 -20 10 -25 -40 50 7 -12 -66 -94 -29]] ||   || 36.588 || 65/64 91/90 121/120 245/243 ||
|| 35 || <<5 1 12 14 21 -10 5 5 15 25 29 45 -2 15 21]] ||   || 37.533 || 55/54 65/63 99/98 176/175 ||
|| 36 || <<12 -2 20 -6 -42 -31 -2 -51 -111 52 -7 -90 -86 -192 -123]] ||   || 37.965 || 225/224 275/273 385/384 4000/3993 ||
|| 37 || <<13 7 18 10 -7 -19 -8 -29 -59 22 -1 -42 -34 -86 -61]] ||   || 38.144 || 65/64 99/98 121/120 275/273 ||
|| 38 || <<13 -15 18 -12 -51 -54 -8 -64 -129 84 24 -63 -96 -210 -132]] ||   || 39.456 || 176/175 351/350 540/539 33275/33124 ||
|| 39 || <<5 1 -10 -8 -1 -10 -30 -30 -20 -26 -22 -6 12 34 26]] ||   || 39.703 || 64/63 65/63 100/99 169/165 ||
|| 40 || <<1 -13 -2 -6 -31 -23 -6 -13 -53 32 31 -24 -10 -80 -85]] ||   || 39.876 || 64/63 99/98 121/120 275/273 ||

Original HTML content:

<html><head><title>List of 22et rank two temperaments by badness</title></head><body>Below are listed rank-two temperaments supported by the <a class="wiki_link" href="/22edo">22edo</a> patent val, below the indicated cutoff in TE badness.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x5-limit temperaments with badness below 0.1"></a><!-- ws:end:WikiTextHeadingRule:0 -->5-limit temperaments with badness below 0.1</h1>
 Listed is the wedgie and the TE badness times 1000 for six temperaments with badness less than 0.1.<br />


<table class="wiki_table">
    <tr>
        <td>Rank<br />
</td>
        <td>Wedgie<br />
</td>
        <td>Name<br />
</td>
        <td>Badness<br />
</td>
        <td>Commas<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>&lt;&lt;16 -10 -53]]<br />
</td>
        <td>Kwazy<br />
</td>
        <td>14.091<br />
</td>
        <td>9010162353515625/9007199254740992<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>&lt;&lt;2 -4 -11]]<br />
</td>
        <td>Srutal<br />
</td>
        <td>19.915<br />
</td>
        <td>2048/2025<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>&lt;&lt;3 5 1]]<br />
</td>
        <td>Porcupine<br />
</td>
        <td>30.778<br />
</td>
        <td>250/243<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>&lt;&lt;5 1 -10]]<br />
</td>
        <td>Magic<br />
</td>
        <td>39.163<br />
</td>
        <td>3125/3072<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>&lt;&lt;7 -3 -21]]<br />
</td>
        <td>Orson<br />
</td>
        <td>40.807<br />
</td>
        <td>2109375/2097152<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>&lt;&lt;9 -7 -32]]<br />
</td>
        <td>Escapade<br />
</td>
        <td>83.778<br />
</td>
        <td>4294967296/4271484375<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="x7-limit temperaments with badness below 0.06"></a><!-- ws:end:WikiTextHeadingRule:2 -->7-limit temperaments with badness below 0.06</h1>
 Listed is the wedgie and the TE badness times 1000 for 14 temperaments with badness less than 0.06.<br />


<table class="wiki_table">
    <tr>
        <td>Rank<br />
</td>
        <td>Wedgie<br />
</td>
        <td>Name<br />
</td>
        <td>Badness<br />
</td>
        <td>Commas<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>&lt;&lt;5 1 12 -10 5 25]]<br />
</td>
        <td>Magic<br />
</td>
        <td>18.918<br />
</td>
        <td>225/224 245/243<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>&lt;&lt;2 -4 -4 -11 -12 2]]<br />
</td>
        <td>Pajara<br />
</td>
        <td>20.033<br />
</td>
        <td>50/49 64/63<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>&lt;&lt;7 -3 8 -21 -7 27]]<br />
</td>
        <td>Orwell<br />
</td>
        <td>20.735<br />
</td>
        <td>225/224 1728/1715<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>&lt;&lt;23 -13 42 -74 2 134]]<br />
</td>
        <td>Fifthplus<br />
</td>
        <td>25.840<br />
</td>
        <td>65625/65536 420175/419904<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>&lt;&lt;1 9 -2 12 -6 -30]]<br />
</td>
        <td>Superpyth<br />
</td>
        <td>32.318<br />
</td>
        <td>64/63 245/243<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>&lt;&lt;12 -2 20 -31 -2 52]]<br />
</td>
        <td>Wizard<br />
</td>
        <td>40.846<br />
</td>
        <td>225/224 118098/117649<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>&lt;&lt;3 5 -6 1 -18 -28]]<br />
</td>
        <td>Porcupine<br />
</td>
        <td>41.057<br />
</td>
        <td>64/63 250/243<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>&lt;&lt;11 -11 22 -43 4 82]]<br />
</td>
        <td>Hendecatonic<br />
</td>
        <td>41.081<br />
</td>
        <td>6144/6125 10976/10935<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>&lt;&lt;8 6 6 -9 -13 -3]]<br />
</td>
        <td>Doublewide<br />
</td>
        <td>43.462<br />
</td>
        <td>50/49 875/864<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>&lt;&lt;6 10 10 2 -1 -5]]<br />
</td>
        <td>Hedgehog<br />
</td>
        <td>43.983<br />
</td>
        <td>50/49 245/243<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>&lt;&lt;4 -8 14 -22 11 55]]<br />
</td>
        <td>Shrutar<br />
</td>
        <td>47.377<br />
</td>
        <td>245/243 2048/2025<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>&lt;&lt;3 5 16 1 17 23]]<br />
</td>
        <td>Porky<br />
</td>
        <td>54.389<br />
</td>
        <td>225/224 250/243<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>&lt;&lt;6 -12 10 -33 -1 57]]<br />
</td>
        <td>Echidna<br />
</td>
        <td>58.033<br />
</td>
        <td>1728/1715 2048/2025<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>&lt;&lt;18 -14 30 -64 -3 109]]<br />
</td>
        <td>Septisuperfourth<br />
</td>
        <td>59.241<br />
</td>
        <td>6144/6125 118098/117649<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="x11-limit temperaments with badness below 0.05"></a><!-- ws:end:WikiTextHeadingRule:4 -->11-limit temperaments with badness below 0.05</h1>
 Listed is the wedgie and the TE badness times 1000 for 38 temperaments with badness less than 0.05.<br />


<table class="wiki_table">
    <tr>
        <td>Rank<br />
</td>
        <td>Wedgie<br />
</td>
        <td>Name<br />
</td>
        <td>Badness<br />
</td>
        <td>Commas<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>&lt;&lt;7 -3 8 2 -21 -7 -21 27 15 -22]]<br />
</td>
        <td>Orwell<br />
</td>
        <td>15.231<br />
</td>
        <td>99/98 121/120 176/175<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>&lt;&lt;12 -2 20 -6 -31 -2 -51 52 -7 -86]]<br />
</td>
        <td>Wizard<br />
</td>
        <td>18.539<br />
</td>
        <td>225/224 385/384 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>&lt;&lt;2 -4 -4 -12 -11 -12 -26 2 -14 -20]]<br />
</td>
        <td>Pajara<br />
</td>
        <td>20.343<br />
</td>
        <td>50/49 64/63 99/98<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>&lt;&lt;5 1 12 -8 -10 5 -30 25 -22 -64]]<br />
</td>
        <td>Magic<br />
</td>
        <td>20.352<br />
</td>
        <td>100/99 225/224 245/243<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>&lt;&lt;3 5 -6 4 1 -18 -4 -28 -8 32]]<br />
</td>
        <td>Porcupine<br />
</td>
        <td>21.562<br />
</td>
        <td>55/54 64/63 100/99<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>&lt;&lt;6 10 10 8 2 -1 -8 -5 -16 -12]]<br />
</td>
        <td>Hedgehog<br />
</td>
        <td>23.095<br />
</td>
        <td>50/49 55/54 99/98<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>&lt;&lt;18 -14 30 -20 -64 -3 -94 109 2 -160]]<br />
</td>
        <td>Septisuperfourth<br />
</td>
        <td>24.619<br />
</td>
        <td>540/539 4000/3993 5632/5625<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>&lt;&lt;1 9 -2 16 12 -6 22 -30 6 52]]<br />
</td>
        <td>Superpyth<br />
</td>
        <td>24.976<br />
</td>
        <td>64/63 100/99 245/243<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>&lt;&lt;6 -12 10 -14 -33 -1 -43 57 9 -74]]<br />
</td>
        <td>Echidna<br />
</td>
        <td>25.987<br />
</td>
        <td>176/175 540/539 896/891<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>&lt;&lt;4 -8 14 -2 -22 11 -17 55 23 -54]]<br />
</td>
        <td>Shrutar<br />
</td>
        <td>26.489<br />
</td>
        <td>121/120 176/175 245/243<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>&lt;&lt;5 1 12 14 -10 5 5 25 29 -2]]<br />
</td>
        <td>Telepathy<br />
</td>
        <td>27.109<br />
</td>
        <td>55/54 99/98 176/175<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>&lt;&lt;3 5 16 4 1 17 -4 23 -8 -44]]<br />
</td>
        <td>Porky<br />
</td>
        <td>27.268<br />
</td>
        <td>55/54 100/99 225/224<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>&lt;&lt;46 -26 84 -34 -148 4 -213 268 11 -386]]<br />
</td>
        <td><br />
</td>
        <td>27.785<br />
</td>
        <td>9801/9800 41503/41472 65625/65536<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>&lt;&lt;2 -4 -4 10 -11 -12 9 2 37 42]]<br />
</td>
        <td>Pajarous<br />
</td>
        <td>28.349<br />
</td>
        <td>50/49 55/54 64/63<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>&lt;&lt;34 -24 64 -28 -117 6 -162 216 18 -300]]<br />
</td>
        <td><br />
</td>
        <td>28.943<br />
</td>
        <td>5632/5625 9801/9800 41503/41472<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>&lt;&lt;8 6 6 -4 -9 -13 -34 -3 -30 -32]]<br />
</td>
        <td>Doublewide<br />
</td>
        <td>32.058<br />
</td>
        <td>50/49 99/98 875/864<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>&lt;&lt;16 -10 34 -8 -53 9 -68 107 16 -140]]<br />
</td>
        <td>Bisupermajor<br />
</td>
        <td>32.080<br />
</td>
        <td>385/384 3388/3375 9801/9800<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>&lt;&lt;1 -13 -2 -6 -23 -6 -13 32 31 -10]]<br />
</td>
        <td>Quasisupra<br />
</td>
        <td>32.203<br />
</td>
        <td>64/63 99/98 121/120<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>&lt;&lt;1 9 -2 -6 12 -6 -13 -30 -45 -10]]<br />
</td>
        <td>Suprapyth<br />
</td>
        <td>32.768<br />
</td>
        <td>55/54 64/63 99/98<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>&lt;&lt;8 6 6 18 -9 -13 1 -3 21 30]]<br />
</td>
        <td>Fleetwood<br />
</td>
        <td>35.202<br />
</td>
        <td>50/49 55/54 176/175<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>&lt;&lt;9 -7 26 -10 -32 16 -47 80 1 -118]]<br />
</td>
        <td>Sensa<br />
</td>
        <td>35.844<br />
</td>
        <td>245/243 385/384 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>&lt;&lt;10 2 24 6 -20 10 -25 50 7 -66]]<br />
</td>
        <td>Divination<br />
</td>
        <td>35.864<br />
</td>
        <td>121/120 225/224 245/243<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>&lt;&lt;9 -7 4 -10 -32 -19 -47 29 1 -42]]<br />
</td>
        <td><br />
</td>
        <td>36.700<br />
</td>
        <td>99/98 176/175 2560/2541<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>&lt;&lt;11 -11 22 -22 -43 4 -73 82 -13 -138]]<br />
</td>
        <td><br />
</td>
        <td>38.042<br />
</td>
        <td>540/539 896/891 4375/4356<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>&lt;&lt;4 -8 -8 -2 -22 -24 -17 4 23 22]]<br />
</td>
        <td><br />
</td>
        <td>38.890<br />
</td>
        <td>50/49 64/63 121/120<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>&lt;&lt;10 2 2 6 -20 -25 -25 -1 7 10]]<br />
</td>
        <td><br />
</td>
        <td>39.151<br />
</td>
        <td>50/49 121/120 176/175<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>&lt;&lt;19 -5 28 -4 -52 -9 -72 79 8 -108]]<br />
</td>
        <td><br />
</td>
        <td>40.603<br />
</td>
        <td>225/224 385/384 43923/43750<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>&lt;&lt;13 7 18 10 -19 -8 -29 22 -1 -34]]<br />
</td>
        <td><br />
</td>
        <td>41.282<br />
</td>
        <td>99/98 121/120 625/616<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>&lt;&lt;30 -16 50 -26 -95 -5 -145 161 -5 -246]]<br />
</td>
        <td><br />
</td>
        <td>42.972<br />
</td>
        <td>540/539 4000/3993 65625/65536<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>&lt;&lt;13 -15 18 -12 -54 -8 -64 84 24 -96]]<br />
</td>
        <td><br />
</td>
        <td>43.309<br />
</td>
        <td>176/175 540/539 16384/16335<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>&lt;&lt;4 14 14 20 13 11 18 -7 -2 8]]<br />
</td>
        <td><br />
</td>
        <td>45.052<br />
</td>
        <td>50/49 99/98 2662/2625<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>&lt;&lt;2 -4 18 -12 -11 23 -26 53 -14 -96]]<br />
</td>
        <td><br />
</td>
        <td>45.270<br />
</td>
        <td>100/99 385/384 1232/1215<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>&lt;&lt;7 -3 8 -20 -21 -7 -56 27 -36 -84]]<br />
</td>
        <td><br />
</td>
        <td>45.950<br />
</td>
        <td>100/99 225/224 1728/1715<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>&lt;&lt;11 -11 22 0 -43 4 -38 82 38 -76]]<br />
</td>
        <td><br />
</td>
        <td>46.088<br />
</td>
        <td>121/120 176/175 10976/10935<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>&lt;&lt;5 1 -10 -8 -10 -30 -30 -26 -22 12]]<br />
</td>
        <td><br />
</td>
        <td>47.379<br />
</td>
        <td>64/63 100/99 605/588<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>&lt;&lt;28 -12 54 -14 -84 7 -119 159 9 -226]]<br />
</td>
        <td><br />
</td>
        <td>47.776<br />
</td>
        <td>385/384 9801/9800 456533/455625<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>&lt;&lt;0 0 0 22 0 0 35 0 51 62]]<br />
</td>
        <td><br />
</td>
        <td>48.372<br />
</td>
        <td>50/49 64/63 245/243<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>&lt;&lt;25 -17 38 -18 -85 -10 -115 136 17 -182]]<br />
</td>
        <td><br />
</td>
        <td>49.466<br />
</td>
        <td>540/539 5632/5625 35937/35840<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="x13-limit temperaments with badness below 0.04"></a><!-- ws:end:WikiTextHeadingRule:6 -->13-limit temperaments with badness below 0.04</h1>
 Listed is the wedgie and the TE badness times 1000 for 40 temperaments with badness less than 0.04.<br />


<table class="wiki_table">
    <tr>
        <td>Rank<br />
</td>
        <td>Wedgie<br />
</td>
        <td>Name<br />
</td>
        <td>Badness<br />
</td>
        <td>Commas<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>&lt;&lt;7 -3 8 2 -19 -21 -7 -21 -56 27 15 -33 -22 -83 -73]]<br />
</td>
        <td>Orwell<br />
</td>
        <td>19.718<br />
</td>
        <td>99/98 121/120 176/175 275/273<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>&lt;&lt;6 10 10 8 12 2 -1 -8 -3 -5 -16 -9 -12 -3 12]]<br />
</td>
        <td>Hedgehog<br />
</td>
        <td>21.516<br />
</td>
        <td>50/49 55/54 65/63 99/98<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>&lt;&lt;12 -2 20 -6 -20 -31 -2 -51 -76 52 -7 -39 -86 -130 -47]]<br />
</td>
        <td>Lizard<br />
</td>
        <td>21.781<br />
</td>
        <td>225/224 351/350 364/363 385/384<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>&lt;&lt;2 -4 -4 -12 -18 -11 -12 -26 -36 2 -14 -27 -20 -36 -18]]<br />
</td>
        <td>Pajara<br />
</td>
        <td>22.327<br />
</td>
        <td>50/49 64/63 99/98 975/968<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>&lt;&lt;7 -3 8 2 3 -21 -7 -21 -21 27 15 18 -22 -21 3]]<br />
</td>
        <td>Blair<br />
</td>
        <td>23.086<br />
</td>
        <td>65/64 78/77 91/90 99/98<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>&lt;&lt;6 -12 10 -14 -32 -33 -1 -43 -73 57 9 -30 -74 -127 -59]]<br />
</td>
        <td>Echidna<br />
</td>
        <td>23.679<br />
</td>
        <td>176/175 351/350 364/363 540/539<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>&lt;&lt;1 9 -2 16 13 12 -6 22 17 -30 6 -3 52 44 -14]]<br />
</td>
        <td>Superpyth<br />
</td>
        <td>24.673<br />
</td>
        <td>64/63 78/77 91/90 100/99<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>&lt;&lt;2 -4 -4 10 4 -11 -12 9 -1 2 37 24 42 26 -23]]<br />
</td>
        <td>Pajarous<br />
</td>
        <td>25.176<br />
</td>
        <td>50/49 55/54 64/63 65/63<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>&lt;&lt;5 1 12 -8 -23 -10 5 -30 -55 25 -22 -57 -64 -109 -50]]<br />
</td>
        <td>Necromancy<br />
</td>
        <td>25.275<br />
</td>
        <td>100/99 225/224 245/243 275/273<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>&lt;&lt;3 5 -6 4 17 1 -18 -4 16 -28 -8 21 32 70 44]]<br />
</td>
        <td>Porcupinefish<br />
</td>
        <td>25.314<br />
</td>
        <td>55/54 64/63 91/90 100/99<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>&lt;&lt;5 1 12 14 -1 -10 5 5 -20 25 29 -6 -2 -47 -55]]<br />
</td>
        <td>Telepathy<br />
</td>
        <td>25.522<br />
</td>
        <td>55/54 65/64 91/90 99/98<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>&lt;&lt;5 1 12 -8 -1 -10 5 -30 -20 25 -22 -6 -64 -47 26]]<br />
</td>
        <td>Sorcery<br />
</td>
        <td>25.829<br />
</td>
        <td>65/64 78/77 91/90 100/99<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>&lt;&lt;3 5 -6 4 -5 1 -18 -4 -19 -28 -8 -30 32 8 -32]]<br />
</td>
        <td>Porkpie<br />
</td>
        <td>26.043<br />
</td>
        <td>55/54 64/63 65/63 100/99<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>&lt;&lt;4 -8 14 -2 -14 -22 11 -17 -37 55 23 -3 -54 -91 -41]]<br />
</td>
        <td>Srutar<br />
</td>
        <td>26.069<br />
</td>
        <td>91/90 121/120 176/175 245/243<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>&lt;&lt;3 5 16 4 -5 1 17 -4 -19 23 -8 -30 -44 -73 -32]]<br />
</td>
        <td><br />
</td>
        <td>26.543<br />
</td>
        <td>55/54 65/64 91/90 100/99<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>&lt;&lt;2 -4 -4 -12 4 -11 -12 -26 -1 2 -14 24 -20 26 58]]<br />
</td>
        <td><br />
</td>
        <td>27.642<br />
</td>
        <td>50/49 64/63 65/63 99/98<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>&lt;&lt;8 6 6 -4 -6 -9 -13 -34 -39 -3 -30 -36 -32 -39 -6]]<br />
</td>
        <td><br />
</td>
        <td>29.481<br />
</td>
        <td>50/49 78/77 99/98 875/864<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>&lt;&lt;0 0 0 0 22 0 0 0 35 0 0 51 0 62 76]]<br />
</td>
        <td><br />
</td>
        <td>29.849<br />
</td>
        <td>50/49 55/54 64/63 99/98<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>&lt;&lt;1 -13 -2 -6 -9 -23 -6 -13 -18 32 31 27 -10 -18 -9]]<br />
</td>
        <td><br />
</td>
        <td>30.219<br />
</td>
        <td>64/63 78/77 91/90 121/120<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>&lt;&lt;9 -7 26 -10 -37 -32 16 -47 -92 80 1 -60 -118 -200 -91]]<br />
</td>
        <td><br />
</td>
        <td>31.366<br />
</td>
        <td>245/243 352/351 385/384 625/624<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>&lt;&lt;8 6 6 18 16 -9 -13 1 -4 -3 21 15 30 23 -11]]<br />
</td>
        <td><br />
</td>
        <td>31.835<br />
</td>
        <td>50/49 55/54 65/63 176/175<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>&lt;&lt;1 9 -2 -6 13 12 -6 -13 17 -30 -45 -3 -10 44 67]]<br />
</td>
        <td><br />
</td>
        <td>32.306<br />
</td>
        <td>55/54 64/63 91/90 99/98<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>&lt;&lt;18 -14 30 -20 -52 -64 -3 -94 -149 109 2 -69 -160 -257 -106]]<br />
</td>
        <td><br />
</td>
        <td>33.038<br />
</td>
        <td>351/350 364/363 540/539 4096/4095<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>&lt;&lt;16 -10 34 -8 -56 -53 9 -68 -148 107 16 -93 -140 -283 -164]]<br />
</td>
        <td><br />
</td>
        <td>33.800<br />
</td>
        <td>352/351 385/384 625/624 4459/4455<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>&lt;&lt;19 -5 28 -4 -39 -52 -9 -72 -132 79 8 -72 -108 -213 -120]]<br />
</td>
        <td><br />
</td>
        <td>34.251<br />
</td>
        <td>225/224 351/350 385/384 10648/10647<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>&lt;&lt;10 2 2 6 -2 -20 -25 -25 -40 -1 7 -12 10 -13 -29]]<br />
</td>
        <td><br />
</td>
        <td>34.376<br />
</td>
        <td>50/49 65/64 78/77 121/120<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>&lt;&lt;3 5 16 4 17 1 17 -4 16 23 -8 21 -44 -11 44]]<br />
</td>
        <td><br />
</td>
        <td>35.176<br />
</td>
        <td>55/54 65/63 100/99 225/224<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>&lt;&lt;9 -7 4 -10 -15 -32 -19 -47 -57 29 1 -9 -42 -57 -15]]<br />
</td>
        <td><br />
</td>
        <td>35.261<br />
</td>
        <td>78/77 99/98 176/175 507/500<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>&lt;&lt;4 -8 -8 -2 -14 -22 -24 -17 -37 4 23 -3 22 -10 -41]]<br />
</td>
        <td><br />
</td>
        <td>35.651<br />
</td>
        <td>50/49 64/63 78/77 121/120<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>&lt;&lt;1 9 -2 16 35 12 -6 22 52 -30 6 48 52 106 62]]<br />
</td>
        <td><br />
</td>
        <td>35.982<br />
</td>
        <td>64/63 100/99 245/243 275/273<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>&lt;&lt;11 -11 22 -22 -55 -43 4 -73 -128 82 -13 -87 -138 -236 -109]]<br />
</td>
        <td><br />
</td>
        <td>36.112<br />
</td>
        <td>352/351 364/363 540/539 625/624<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>&lt;&lt;1 9 -2 -6 -9 12 -6 -13 -18 -30 -45 -54 -10 -18 -9]]<br />
</td>
        <td><br />
</td>
        <td>36.336<br />
</td>
        <td>55/54 64/63 65/63 364/363<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>&lt;&lt;6 10 10 8 -10 2 -1 -8 -38 -5 -16 -60 -12 -65 -64]]<br />
</td>
        <td><br />
</td>
        <td>36.358<br />
</td>
        <td>50/49 55/54 99/98 975/968<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>&lt;&lt;10 2 24 6 -2 -20 10 -25 -40 50 7 -12 -66 -94 -29]]<br />
</td>
        <td><br />
</td>
        <td>36.588<br />
</td>
        <td>65/64 91/90 121/120 245/243<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>&lt;&lt;5 1 12 14 21 -10 5 5 15 25 29 45 -2 15 21]]<br />
</td>
        <td><br />
</td>
        <td>37.533<br />
</td>
        <td>55/54 65/63 99/98 176/175<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>&lt;&lt;12 -2 20 -6 -42 -31 -2 -51 -111 52 -7 -90 -86 -192 -123]]<br />
</td>
        <td><br />
</td>
        <td>37.965<br />
</td>
        <td>225/224 275/273 385/384 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>&lt;&lt;13 7 18 10 -7 -19 -8 -29 -59 22 -1 -42 -34 -86 -61]]<br />
</td>
        <td><br />
</td>
        <td>38.144<br />
</td>
        <td>65/64 99/98 121/120 275/273<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>&lt;&lt;13 -15 18 -12 -51 -54 -8 -64 -129 84 24 -63 -96 -210 -132]]<br />
</td>
        <td><br />
</td>
        <td>39.456<br />
</td>
        <td>176/175 351/350 540/539 33275/33124<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>&lt;&lt;5 1 -10 -8 -1 -10 -30 -30 -20 -26 -22 -6 12 34 26]]<br />
</td>
        <td><br />
</td>
        <td>39.703<br />
</td>
        <td>64/63 65/63 100/99 169/165<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>&lt;&lt;1 -13 -2 -6 -31 -23 -6 -13 -53 32 31 -24 -10 -80 -85]]<br />
</td>
        <td><br />
</td>
        <td>39.876<br />
</td>
        <td>64/63 99/98 121/120 275/273<br />
</td>
    </tr>
</table>

</body></html>