List of edo-distinct 16et rank two temperaments
The temperaments listed are 16edo-distinct, meaning that they are all different even if tuned in 16edo. The ordering is by increasing complexity of 3. The temperament of lowest Tenney–Euclidean complexity was chosen as the representative for each class of edo-distinctness.
5-limit temperaments
Period, generator |
Wedgie | Name | Complexity | Commas |
---|---|---|---|---|
16, 7 | ⟨⟨ 1 -3 -7 ]] | Mavila | 1.377 | 135/128 |
8, 1 | ⟨⟨ 2 10 11 ]] | 3.113 | 59049/51200 | |
16, 3 | ⟨⟨ 3 7 4 ]] | Laconic | 2.149 | 2187/2000 |
4, 1 | ⟨⟨ 4 4 -3 ]] | Diminished | 1.826 | 648/625 |
16, 5 | ⟨⟨ 5 1 -10 ]] | Magic | 2.417 | 3125/3072 |
8, 3 | ⟨⟨ 6 -2 -17 ]] | 3.484 | 140625/131072 | |
16, 1 | ⟨⟨ 7 11 1 ]] | 3.743 | 177147/156250 | |
2, 1 | ⟨⟨ 8 -8 -31 ]] | 6.008 | 2562890625/2147483648 |
7-limit temperaments
Period, generator |
Wedgie | Name | Complexity | Commas |
---|---|---|---|---|
16, 7 | ⟨⟨ 1 -3 5 -7 5 20 ]] | Armodue | 1.804 | 36/35 135/128 |
8, 1 | ⟨⟨ 2 -6 -6 -14 -15 3 ]] | Bipelog | 2.546 | 50/49 135/128 |
16, 3 | ⟨⟨ 3 7 -1 4 -10 -22 ]] | Gorgo | 2.252 | 36/35 1029/1024 |
4, 1 | ⟨⟨ 4 4 4 -3 -5 -2 ]] | Diminished | 1.494 | 36/35 50/49 |
16, 5 | ⟨⟨ 5 1 9 -10 0 18 ]] | 2.430 | 36/35 1875/1792 | |
8, 3 | ⟨⟨ 6 -2 -2 -17 -20 1 ]] | Lemba | 3.086 | 50/49 525/512 |
16, 1 | ⟨⟨ 7 11 3 1 -15 -24 ]] | 3.369 | 36/35 51200/50421 | |
2, 1 | ⟨⟨ 8 8 -8 -6 -35 -41 ]] | 4.993 | 648/625 1323/1280 |
11-limit temperaments
Period, generator |
Wedgie | Name | Complexity | Commas |
---|---|---|---|---|
16, 7 | ⟨⟨ 1 -3 5 -1 -7 5 -5 20 8 -20 ]] | Armodue | 1.603 | 33/32 36/35 45/44 |
8, 1 | ⟨⟨ 2 -6 -6 -2 -14 -15 -10 3 16 15 ]] | Bipelog | 2.211 | 33/32 45/44 50/49 |
16, 3 | ⟨⟨ 3 7 -1 -3 4 -10 -15 -22 -31 -5 ]] | 2.320 | 33/32 36/35 352/343 | |
4, 1 | ⟨⟨ 4 4 4 12 -3 -5 5 -2 14 20 ]] | Demolished | 1.831 | 36/35 45/44 50/49 |
16, 5 | ⟨⟨ 5 1 9 11 -10 0 0 18 22 0 ]] | 2.303 | 36/35 45/44 363/343 | |
8, 3 | ⟨⟨ 6 -2 -2 -6 -17 -20 -30 1 -7 -10 ]] | 3.032 | 50/49 176/175 363/343 | |
16, 1 | ⟨⟨ 7 11 3 9 1 -15 -10 -24 -17 15 ]] | Slurpee | 2.916 | 36/35 121/120 352/343 |
2, 1 | ⟨⟨ 8 8 8 8 -6 -10 -15 -4 -9 -5 ]] | 2.606 | 36/35 50/49 363/343 |
13-limit temperaments
Period, generator |
Wedgie | Name | Complexity | Commas |
---|---|---|---|---|
16, 7 | ⟨⟨ 1 -3 5 -1 3 -7 5 -5 1 20 8 18 -20 -10 14 ]] | Armodue | 1.481 | 27/26 33/32 36/35 45/44 |
8, 1 | ⟨⟨ 2 -6 -6 -2 -10 -14 -15 -10 -23 3 16 -1 15 -6 -27 ]] | 2.256 | 33/32 45/44 50/49 78/77 | |
16, 3 | ⟨⟨ 3 7 -1 -3 9 4 -10 -15 3 -22 -31 -5 -5 29 42 ]] | 2.293 | 27/26 36/35 143/140 275/273 | |
4, 1 | ⟨⟨ 4 4 4 12 12 -3 -5 5 4 -2 14 13 20 19 -3 ]] | 1.829 | 27/26 36/35 45/44 50/49 | |
16, 5 | ⟨⟨ 5 1 9 11 15 -10 0 0 5 18 22 31 0 9 11 ]] | 2.376 | 27/26 36/35 78/77 605/588 | |
8, 3 | ⟨⟨ 6 -2 -2 -6 2 -17 -20 -30 -19 1 -7 12 -10 13 29 ]] | 2.725 | 33/32 50/49 66/65 105/104 | |
16, 1 | ⟨⟨ 7 11 3 9 5 1 -15 -10 -18 -24 -17 -29 15 3 -16 ]] | Slurpee | 2.700 | 36/35 66/65 143/140 352/343 |
2, 1 | ⟨⟨ 8 8 8 8 8 -6 -10 -15 -17 -4 -9 -11 -5 -7 -2 ]] | 2.354 | 36/35 50/49 66/65 143/140 |